Giorgio Lazzari, Giulio Costantini, Stefania La Rocca, Andrea Massironi, Luigi Cattaneo, Virginia Penhune, Carlotta Lega
{"title":"人类运动前皮层节奏感知功能组织的地形:来自经颅磁刺激(TMS)研究的因果证据","authors":"Giorgio Lazzari, Giulio Costantini, Stefania La Rocca, Andrea Massironi, Luigi Cattaneo, Virginia Penhune, Carlotta Lega","doi":"10.1002/hbm.70225","DOIUrl":null,"url":null,"abstract":"<p>Humans can flexibly extract a regular beat from complex rhythmic auditory patterns, as often occurs in music. Contemporary models of beat perception suggest that the premotor cortex (PMC) and the supplementary motor area (SMA) are integral to this process. However, how these motor planning regions actively contribute to beat perception, along with any potential hemispheric specialization, remains open questions. Therefore, following the validation of stimuli in a behavioral experiment (Experiment I, <i>N</i> = 29, 12 males, mean age = 23.8 ± 0.7 years), we employed transcranial magnetic stimulation (TMS) to test the causal contribution of these regions to beat perception. In Experiment II (<i>N</i> = 40, 16 males, mean age = 23.2 ± 2.37 years), we applied online repetitive TMS (rTMS) over a defined grid encompassing the right rostral and caudal dPMC, SMA, and pre-SMA, and a sham control location. Results showed that stimulation of the caudal portion of right dPMC selectively affected beat perception compared to all other regions. In Experiment III (preregistered, <i>N</i> = 42, 17 males, mean age = 23.5 ± 2.61 years), we tested the lateralization of this contribution by applying rTMS over right and left caudal dPMC. Our results showed that only stimulation over right, but not left, dPMC modulated beat perception. Finally, across all three experiments, individual differences in musical reward predicted beat perception sensitivity. Together, these results support the causal role of the right dPMC in generating internal action predictions and perceptual expectations regarding ongoing sequential events, in line with recent models emphasizing the role of the dorsal auditory stream in beat-based temporal perception. These findings offer valuable insights into the functional organization of the premotor cortex, contributing to a deeper understanding of the neural mechanisms involved in human rhythm perception.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 7","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70225","citationCount":"0","resultStr":"{\"title\":\"Topography of Functional Organization of Beat Perception in Human Premotor Cortex: Causal Evidence From a Transcranial Magnetic Stimulation (TMS) Study\",\"authors\":\"Giorgio Lazzari, Giulio Costantini, Stefania La Rocca, Andrea Massironi, Luigi Cattaneo, Virginia Penhune, Carlotta Lega\",\"doi\":\"10.1002/hbm.70225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Humans can flexibly extract a regular beat from complex rhythmic auditory patterns, as often occurs in music. Contemporary models of beat perception suggest that the premotor cortex (PMC) and the supplementary motor area (SMA) are integral to this process. However, how these motor planning regions actively contribute to beat perception, along with any potential hemispheric specialization, remains open questions. Therefore, following the validation of stimuli in a behavioral experiment (Experiment I, <i>N</i> = 29, 12 males, mean age = 23.8 ± 0.7 years), we employed transcranial magnetic stimulation (TMS) to test the causal contribution of these regions to beat perception. In Experiment II (<i>N</i> = 40, 16 males, mean age = 23.2 ± 2.37 years), we applied online repetitive TMS (rTMS) over a defined grid encompassing the right rostral and caudal dPMC, SMA, and pre-SMA, and a sham control location. Results showed that stimulation of the caudal portion of right dPMC selectively affected beat perception compared to all other regions. In Experiment III (preregistered, <i>N</i> = 42, 17 males, mean age = 23.5 ± 2.61 years), we tested the lateralization of this contribution by applying rTMS over right and left caudal dPMC. Our results showed that only stimulation over right, but not left, dPMC modulated beat perception. Finally, across all three experiments, individual differences in musical reward predicted beat perception sensitivity. Together, these results support the causal role of the right dPMC in generating internal action predictions and perceptual expectations regarding ongoing sequential events, in line with recent models emphasizing the role of the dorsal auditory stream in beat-based temporal perception. These findings offer valuable insights into the functional organization of the premotor cortex, contributing to a deeper understanding of the neural mechanisms involved in human rhythm perception.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 7\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70225\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70225\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70225","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Topography of Functional Organization of Beat Perception in Human Premotor Cortex: Causal Evidence From a Transcranial Magnetic Stimulation (TMS) Study
Humans can flexibly extract a regular beat from complex rhythmic auditory patterns, as often occurs in music. Contemporary models of beat perception suggest that the premotor cortex (PMC) and the supplementary motor area (SMA) are integral to this process. However, how these motor planning regions actively contribute to beat perception, along with any potential hemispheric specialization, remains open questions. Therefore, following the validation of stimuli in a behavioral experiment (Experiment I, N = 29, 12 males, mean age = 23.8 ± 0.7 years), we employed transcranial magnetic stimulation (TMS) to test the causal contribution of these regions to beat perception. In Experiment II (N = 40, 16 males, mean age = 23.2 ± 2.37 years), we applied online repetitive TMS (rTMS) over a defined grid encompassing the right rostral and caudal dPMC, SMA, and pre-SMA, and a sham control location. Results showed that stimulation of the caudal portion of right dPMC selectively affected beat perception compared to all other regions. In Experiment III (preregistered, N = 42, 17 males, mean age = 23.5 ± 2.61 years), we tested the lateralization of this contribution by applying rTMS over right and left caudal dPMC. Our results showed that only stimulation over right, but not left, dPMC modulated beat perception. Finally, across all three experiments, individual differences in musical reward predicted beat perception sensitivity. Together, these results support the causal role of the right dPMC in generating internal action predictions and perceptual expectations regarding ongoing sequential events, in line with recent models emphasizing the role of the dorsal auditory stream in beat-based temporal perception. These findings offer valuable insights into the functional organization of the premotor cortex, contributing to a deeper understanding of the neural mechanisms involved in human rhythm perception.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.