Woojin Yang, Eva Blahusova, Reece McCoy, Róisín M. Owens, Matthias Zilbauer
{"title":"基于适应光吸收和表面积归一化模型的新型类器官生长动力学定量评估管道","authors":"Woojin Yang, Eva Blahusova, Reece McCoy, Róisín M. Owens, Matthias Zilbauer","doi":"10.1002/anbr.202400138","DOIUrl":null,"url":null,"abstract":"<p>2D characterization of organoids by light microscopy with live cell imaging systems provides a powerful, rapid approach toward characterizing organoid growth patterns and behavior under different conditions with high temporal resolution. However, current conventional analysis methods display critical flaws in their approximations, including inaccurate assumptions of linear light absorption kinetics and inappropriate normalization of organoid darkness. Organoid darkness represents cellular shedding and debris accumulation in the lumen of organoids and is thus proportional to the surface area, rather than to a 2D organoid projection as is conventionally used. This novel model and image processing pipeline accounts for these shortcomings by incorporating logarithmic light absorption parameters, a noncumulative measure of darkness, and surface area-normalized darkness values which yield accurate and highly reproducible representation of organoid growth kinetics.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"5 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400138","citationCount":"0","resultStr":"{\"title\":\"Novel Quantitative Assessment Pipeline of Organoid Growth Dynamics Using Adapted Light Absorption and Surface Area Normalization Models\",\"authors\":\"Woojin Yang, Eva Blahusova, Reece McCoy, Róisín M. Owens, Matthias Zilbauer\",\"doi\":\"10.1002/anbr.202400138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>2D characterization of organoids by light microscopy with live cell imaging systems provides a powerful, rapid approach toward characterizing organoid growth patterns and behavior under different conditions with high temporal resolution. However, current conventional analysis methods display critical flaws in their approximations, including inaccurate assumptions of linear light absorption kinetics and inappropriate normalization of organoid darkness. Organoid darkness represents cellular shedding and debris accumulation in the lumen of organoids and is thus proportional to the surface area, rather than to a 2D organoid projection as is conventionally used. This novel model and image processing pipeline accounts for these shortcomings by incorporating logarithmic light absorption parameters, a noncumulative measure of darkness, and surface area-normalized darkness values which yield accurate and highly reproducible representation of organoid growth kinetics.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"5 5\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400138\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Novel Quantitative Assessment Pipeline of Organoid Growth Dynamics Using Adapted Light Absorption and Surface Area Normalization Models
2D characterization of organoids by light microscopy with live cell imaging systems provides a powerful, rapid approach toward characterizing organoid growth patterns and behavior under different conditions with high temporal resolution. However, current conventional analysis methods display critical flaws in their approximations, including inaccurate assumptions of linear light absorption kinetics and inappropriate normalization of organoid darkness. Organoid darkness represents cellular shedding and debris accumulation in the lumen of organoids and is thus proportional to the surface area, rather than to a 2D organoid projection as is conventionally used. This novel model and image processing pipeline accounts for these shortcomings by incorporating logarithmic light absorption parameters, a noncumulative measure of darkness, and surface area-normalized darkness values which yield accurate and highly reproducible representation of organoid growth kinetics.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.