促进人髓核细胞增殖的pdgf释放水凝胶

IF 3.9 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Takanori Fukunaga, Joseph J. Pearson, Ryan Cree Miller, Changli Zhang, Mohammed Lakrat, Lisbet Haglund, Martha Elena Diaz-Hernandez, Johnna S. Temenoff, Hicham Drissi
{"title":"促进人髓核细胞增殖的pdgf释放水凝胶","authors":"Takanori Fukunaga,&nbsp;Joseph J. Pearson,&nbsp;Ryan Cree Miller,&nbsp;Changli Zhang,&nbsp;Mohammed Lakrat,&nbsp;Lisbet Haglund,&nbsp;Martha Elena Diaz-Hernandez,&nbsp;Johnna S. Temenoff,&nbsp;Hicham Drissi","doi":"10.1002/jbm.a.37918","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Hydrogels offer a promising solution for sustained and controlled drug delivery and cell-tissue biocompatibility. In the intervertebral disc (IVD), delivering growth factors faces challenges due to the antagonistic inflammatory environment and continuous mechanical stress, which can degrade biological agents and may reduce their local activity. To address this, we investigated the prolonged release of platelet-derived growth factor isoforms BB (PDGF-BB) and AB (PDGF-AB) by using N-desulfated heparin methacrylamide (Hep<sup>-N</sup>) crosslinked within matrix-metalloproteinase sensitive poly(ethylene glycol) (PEG) hydrogels. Using electrostatic interactions between the heparin derivative and PDGF, we optimized a sustained release dose of PDGF-BB from the hydrogel in the presence of collagenase to mimic the in vivo environment. We then assessed the effects of PDGF released from PEG-hydrogel on human nucleus pulposus (NP) Cells. The MTT assay confirmed that 100 and 200 ng doses significantly increased cell viability by 2.52-fold and 2.46-fold on Day 3, respectively. RT-qPCR analysis revealed that PDGF-AB and PDGF-BB upregulated the expression of proliferation marker Ki-67 (MKI67) on both Day 3 and Day 5. Additionally, collagen type II alpha 1 chain (COL2A1) was significantly upregulated in the PDGF-AB group on Day 5, indicating potential anabolic effects. These findings could pave the way for long-term in vivo studies on sustainable PDGF treatment for IVD degeneration.</p>\n </div>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 5","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PDGF-Releasing Hydrogels for Enhanced Proliferation of Human Nucleus Pulposus Cells\",\"authors\":\"Takanori Fukunaga,&nbsp;Joseph J. Pearson,&nbsp;Ryan Cree Miller,&nbsp;Changli Zhang,&nbsp;Mohammed Lakrat,&nbsp;Lisbet Haglund,&nbsp;Martha Elena Diaz-Hernandez,&nbsp;Johnna S. Temenoff,&nbsp;Hicham Drissi\",\"doi\":\"10.1002/jbm.a.37918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Hydrogels offer a promising solution for sustained and controlled drug delivery and cell-tissue biocompatibility. In the intervertebral disc (IVD), delivering growth factors faces challenges due to the antagonistic inflammatory environment and continuous mechanical stress, which can degrade biological agents and may reduce their local activity. To address this, we investigated the prolonged release of platelet-derived growth factor isoforms BB (PDGF-BB) and AB (PDGF-AB) by using N-desulfated heparin methacrylamide (Hep<sup>-N</sup>) crosslinked within matrix-metalloproteinase sensitive poly(ethylene glycol) (PEG) hydrogels. Using electrostatic interactions between the heparin derivative and PDGF, we optimized a sustained release dose of PDGF-BB from the hydrogel in the presence of collagenase to mimic the in vivo environment. We then assessed the effects of PDGF released from PEG-hydrogel on human nucleus pulposus (NP) Cells. The MTT assay confirmed that 100 and 200 ng doses significantly increased cell viability by 2.52-fold and 2.46-fold on Day 3, respectively. RT-qPCR analysis revealed that PDGF-AB and PDGF-BB upregulated the expression of proliferation marker Ki-67 (MKI67) on both Day 3 and Day 5. Additionally, collagen type II alpha 1 chain (COL2A1) was significantly upregulated in the PDGF-AB group on Day 5, indicating potential anabolic effects. These findings could pave the way for long-term in vivo studies on sustainable PDGF treatment for IVD degeneration.</p>\\n </div>\",\"PeriodicalId\":15142,\"journal\":{\"name\":\"Journal of biomedical materials research. Part A\",\"volume\":\"113 5\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37918\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37918","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶为持续和受控的药物输送和细胞组织生物相容性提供了一个有前途的解决方案。在椎间盘(IVD)中,由于拮抗炎症环境和持续的机械应力,生长因子的传递面临挑战,这可能会降解生物制剂并可能降低其局部活性。为了解决这个问题,我们研究了血小板衍生生长因子亚型BB (PDGF-BB)和AB (PDGF-AB)的延长释放,使用n -去硫肝素甲基丙烯酰胺(Hep-N)交联在基质金属蛋白酶敏感聚乙二醇(PEG)水凝胶中。利用肝素衍生物和PDGF之间的静电相互作用,我们优化了PDGF- bb在胶原酶存在下从水凝胶中缓释的剂量,以模拟体内环境。然后,我们评估了聚乙二醇水凝胶释放的PDGF对人髓核(NP)细胞的影响。MTT实验证实,100和200 ng剂量在第3天分别显著提高细胞活力2.52倍和2.46倍。RT-qPCR分析显示,PDGF-AB和PDGF-BB在第3天和第5天上调增殖标志物Ki-67 (MKI67)的表达。此外,在第5天,PDGF-AB组的II型胶原α 1链(COL2A1)显著上调,表明潜在的合成代谢作用。这些发现可以为PDGF治疗IVD变性的长期体内研究铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PDGF-Releasing Hydrogels for Enhanced Proliferation of Human Nucleus Pulposus Cells

Hydrogels offer a promising solution for sustained and controlled drug delivery and cell-tissue biocompatibility. In the intervertebral disc (IVD), delivering growth factors faces challenges due to the antagonistic inflammatory environment and continuous mechanical stress, which can degrade biological agents and may reduce their local activity. To address this, we investigated the prolonged release of platelet-derived growth factor isoforms BB (PDGF-BB) and AB (PDGF-AB) by using N-desulfated heparin methacrylamide (Hep-N) crosslinked within matrix-metalloproteinase sensitive poly(ethylene glycol) (PEG) hydrogels. Using electrostatic interactions between the heparin derivative and PDGF, we optimized a sustained release dose of PDGF-BB from the hydrogel in the presence of collagenase to mimic the in vivo environment. We then assessed the effects of PDGF released from PEG-hydrogel on human nucleus pulposus (NP) Cells. The MTT assay confirmed that 100 and 200 ng doses significantly increased cell viability by 2.52-fold and 2.46-fold on Day 3, respectively. RT-qPCR analysis revealed that PDGF-AB and PDGF-BB upregulated the expression of proliferation marker Ki-67 (MKI67) on both Day 3 and Day 5. Additionally, collagen type II alpha 1 chain (COL2A1) was significantly upregulated in the PDGF-AB group on Day 5, indicating potential anabolic effects. These findings could pave the way for long-term in vivo studies on sustainable PDGF treatment for IVD degeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomedical materials research. Part A
Journal of biomedical materials research. Part A 工程技术-材料科学:生物材料
CiteScore
10.40
自引率
2.00%
发文量
135
审稿时长
3.6 months
期刊介绍: The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device. The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信