Katerina Georgiou, Denis Angers, Ryan E. Champiny, M. Francesca Cotrufo, Matthew E. Craig, Sebastian Doetterl, A. Stuart Grandy, Jocelyn M. Lavallee, Yang Lin, Emanuele Lugato, Christopher Poeplau, Katherine S. Rocci, Steffen A. Schweizer, Johan Six, William R. Wieder
{"title":"土壤碳饱和度:我们到底知道什么?","authors":"Katerina Georgiou, Denis Angers, Ryan E. Champiny, M. Francesca Cotrufo, Matthew E. Craig, Sebastian Doetterl, A. Stuart Grandy, Jocelyn M. Lavallee, Yang Lin, Emanuele Lugato, Christopher Poeplau, Katherine S. Rocci, Steffen A. Schweizer, Johan Six, William R. Wieder","doi":"10.1111/gcb.70197","DOIUrl":null,"url":null,"abstract":"<p>Managing soils to increase organic carbon storage presents a potential opportunity to mitigate and adapt to global change challenges, while providing numerous co-benefits and ecosystem services. However, soils differ widely in their potential for carbon sequestration, and knowledge of biophysical limits to carbon accumulation may aid in informing priority regions. Consequently, there is great interest in assessing whether soils exhibit a maximum capacity for storing organic carbon, particularly within organo–mineral associations given the finite nature of reactive minerals in a soil. While the concept of soil carbon saturation has existed for over 25 years, recent studies have argued for and against its importance. Here, we summarize the conceptual understanding of soil carbon saturation at both micro- and macro-scales, define key terminology, and address common concerns and misconceptions. We review methods used to quantify soil carbon saturation, highlighting the theory and potential caveats of each approach. Critically, we explore the utility of the principles of soil carbon saturation for informing carbon accumulation, vulnerability to loss, and representations in process-based models. We highlight key knowledge gaps and propose next steps for furthering our mechanistic understanding of soil carbon saturation and its implications for soil management.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 5","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70197","citationCount":"0","resultStr":"{\"title\":\"Soil Carbon Saturation: What Do We Really Know?\",\"authors\":\"Katerina Georgiou, Denis Angers, Ryan E. Champiny, M. Francesca Cotrufo, Matthew E. Craig, Sebastian Doetterl, A. Stuart Grandy, Jocelyn M. Lavallee, Yang Lin, Emanuele Lugato, Christopher Poeplau, Katherine S. Rocci, Steffen A. Schweizer, Johan Six, William R. Wieder\",\"doi\":\"10.1111/gcb.70197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Managing soils to increase organic carbon storage presents a potential opportunity to mitigate and adapt to global change challenges, while providing numerous co-benefits and ecosystem services. However, soils differ widely in their potential for carbon sequestration, and knowledge of biophysical limits to carbon accumulation may aid in informing priority regions. Consequently, there is great interest in assessing whether soils exhibit a maximum capacity for storing organic carbon, particularly within organo–mineral associations given the finite nature of reactive minerals in a soil. While the concept of soil carbon saturation has existed for over 25 years, recent studies have argued for and against its importance. Here, we summarize the conceptual understanding of soil carbon saturation at both micro- and macro-scales, define key terminology, and address common concerns and misconceptions. We review methods used to quantify soil carbon saturation, highlighting the theory and potential caveats of each approach. Critically, we explore the utility of the principles of soil carbon saturation for informing carbon accumulation, vulnerability to loss, and representations in process-based models. We highlight key knowledge gaps and propose next steps for furthering our mechanistic understanding of soil carbon saturation and its implications for soil management.</p>\",\"PeriodicalId\":175,\"journal\":{\"name\":\"Global Change Biology\",\"volume\":\"31 5\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70197\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Change Biology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70197\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70197","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Managing soils to increase organic carbon storage presents a potential opportunity to mitigate and adapt to global change challenges, while providing numerous co-benefits and ecosystem services. However, soils differ widely in their potential for carbon sequestration, and knowledge of biophysical limits to carbon accumulation may aid in informing priority regions. Consequently, there is great interest in assessing whether soils exhibit a maximum capacity for storing organic carbon, particularly within organo–mineral associations given the finite nature of reactive minerals in a soil. While the concept of soil carbon saturation has existed for over 25 years, recent studies have argued for and against its importance. Here, we summarize the conceptual understanding of soil carbon saturation at both micro- and macro-scales, define key terminology, and address common concerns and misconceptions. We review methods used to quantify soil carbon saturation, highlighting the theory and potential caveats of each approach. Critically, we explore the utility of the principles of soil carbon saturation for informing carbon accumulation, vulnerability to loss, and representations in process-based models. We highlight key knowledge gaps and propose next steps for furthering our mechanistic understanding of soil carbon saturation and its implications for soil management.
期刊介绍:
Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health.
Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.