Vinay K. Giri MD, David F. McDermott MD, Jacob Zaemes MD
{"title":"淋巴细胞活化基因3在实体恶性肿瘤治疗中的新作用","authors":"Vinay K. Giri MD, David F. McDermott MD, Jacob Zaemes MD","doi":"10.1002/cncr.35892","DOIUrl":null,"url":null,"abstract":"<p>PD-(L)1–based immune checkpoint inhibitor therapies have profoundly impacted the treatment of many solid malignancies. Although the addition of CTLA-4 checkpoint inhibitors can enhance anticancer activity, it also significantly increases the rate of immune-related adverse events. Therefore, there has been much interest in identifying additional immune checkpoints to improve the outcomes seen with PD-1–based therapy while minimizing additional side effects. One such target, lymphocyte-activation gene 3 (LAG-3), has long been recognized as an important inhibitor of T-cell function via modulation of the T-cell receptor pathway. Several drugs targeting LAG-3 have been developed, including most prominently the monoclonal antibody relatlimab. To date, the most significant demonstration of efficacy in targeting LAG-3 has been the use of relatlimab with the PD-1 inhibitor nivolumab in the treatment of advanced melanoma. The combination of nivolumab plus relatlimab is more efficacious compared to PD-1 inhibition alone, as has been previously seen with the combination of CTLA-4 inhibitor ipilimumab with nivolumab. However, nivolumab plus relatlimab offers a potentially more favorable toxicity profile. Here, the authors review the mechanism of the LAG-3 pathway and its rationale as a target for anticancer therapy as well as currently available data regarding the use of LAG-3 agents in treating melanoma and other solid tumors. Other investigational agents that target LAG-3 via novel mechanisms are also reviewed.</p>","PeriodicalId":138,"journal":{"name":"Cancer","volume":"131 10","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The emerging role of lymphocyte-activation gene 3 targeting in the treatment of solid malignancies\",\"authors\":\"Vinay K. Giri MD, David F. McDermott MD, Jacob Zaemes MD\",\"doi\":\"10.1002/cncr.35892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>PD-(L)1–based immune checkpoint inhibitor therapies have profoundly impacted the treatment of many solid malignancies. Although the addition of CTLA-4 checkpoint inhibitors can enhance anticancer activity, it also significantly increases the rate of immune-related adverse events. Therefore, there has been much interest in identifying additional immune checkpoints to improve the outcomes seen with PD-1–based therapy while minimizing additional side effects. One such target, lymphocyte-activation gene 3 (LAG-3), has long been recognized as an important inhibitor of T-cell function via modulation of the T-cell receptor pathway. Several drugs targeting LAG-3 have been developed, including most prominently the monoclonal antibody relatlimab. To date, the most significant demonstration of efficacy in targeting LAG-3 has been the use of relatlimab with the PD-1 inhibitor nivolumab in the treatment of advanced melanoma. The combination of nivolumab plus relatlimab is more efficacious compared to PD-1 inhibition alone, as has been previously seen with the combination of CTLA-4 inhibitor ipilimumab with nivolumab. However, nivolumab plus relatlimab offers a potentially more favorable toxicity profile. Here, the authors review the mechanism of the LAG-3 pathway and its rationale as a target for anticancer therapy as well as currently available data regarding the use of LAG-3 agents in treating melanoma and other solid tumors. Other investigational agents that target LAG-3 via novel mechanisms are also reviewed.</p>\",\"PeriodicalId\":138,\"journal\":{\"name\":\"Cancer\",\"volume\":\"131 10\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cncr.35892\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cncr.35892","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
The emerging role of lymphocyte-activation gene 3 targeting in the treatment of solid malignancies
PD-(L)1–based immune checkpoint inhibitor therapies have profoundly impacted the treatment of many solid malignancies. Although the addition of CTLA-4 checkpoint inhibitors can enhance anticancer activity, it also significantly increases the rate of immune-related adverse events. Therefore, there has been much interest in identifying additional immune checkpoints to improve the outcomes seen with PD-1–based therapy while minimizing additional side effects. One such target, lymphocyte-activation gene 3 (LAG-3), has long been recognized as an important inhibitor of T-cell function via modulation of the T-cell receptor pathway. Several drugs targeting LAG-3 have been developed, including most prominently the monoclonal antibody relatlimab. To date, the most significant demonstration of efficacy in targeting LAG-3 has been the use of relatlimab with the PD-1 inhibitor nivolumab in the treatment of advanced melanoma. The combination of nivolumab plus relatlimab is more efficacious compared to PD-1 inhibition alone, as has been previously seen with the combination of CTLA-4 inhibitor ipilimumab with nivolumab. However, nivolumab plus relatlimab offers a potentially more favorable toxicity profile. Here, the authors review the mechanism of the LAG-3 pathway and its rationale as a target for anticancer therapy as well as currently available data regarding the use of LAG-3 agents in treating melanoma and other solid tumors. Other investigational agents that target LAG-3 via novel mechanisms are also reviewed.
期刊介绍:
The CANCER site is a full-text, electronic implementation of CANCER, an Interdisciplinary International Journal of the American Cancer Society, and CANCER CYTOPATHOLOGY, a Journal of the American Cancer Society.
CANCER publishes interdisciplinary oncologic information according to, but not limited to, the following disease sites and disciplines: blood/bone marrow; breast disease; endocrine disorders; epidemiology; gastrointestinal tract; genitourinary disease; gynecologic oncology; head and neck disease; hepatobiliary tract; integrated medicine; lung disease; medical oncology; neuro-oncology; pathology radiation oncology; translational research