Jiaxing Huang, Yao Zhao, Jian Song, Shengqi Huang, Kai Wang, Zhenghua Rao, Yongliang Zhao, Liang Wang, Xi Wan, Yue Fei, Christos N. Markides
{"title":"冷、热、电联合应用的热-机械储能技术进展综述","authors":"Jiaxing Huang, Yao Zhao, Jian Song, Shengqi Huang, Kai Wang, Zhenghua Rao, Yongliang Zhao, Liang Wang, Xi Wan, Yue Fei, Christos N. Markides","doi":"10.1007/s11708-025-0998-0","DOIUrl":null,"url":null,"abstract":"<div><p>Thermo-mechanical energy storage (TMES) technologies have attracted significant attention due to their potential for grid-scale, long-duration electricity storage, offering advantages such as minimal geographical constraints, low environmental impact, and long operational lifespans. A key benefit of TMES systems is their ability to perform energy conversion steps that enable interaction with both thermal energy consumers and prosumers, effectively functioning as combined cooling, heating and power (CCHP) systems. This paper reviews recent progress in various TMES technologies, focusing on compressed-air energy storage (CAES), liquid-air energy storage (LAES), pumped-thermal electricity storage (PTES, also known as Carnot battery), and carbon dioxide energy storage (CES), while exploring their potential applications as extended CCHP systems for trigeneration. Techno-economic analysis indicate that TMES-based CCHP systems can achieve roundtrip (power-to-power) efficiencies ranging from 40% to 130%, overall (trigeneration) energy efficiencies from 70% to 190%, and a levelized cost of energy (with cooling and heating outputs converted into equivalent electricity) between 70 and 200 $/MWh. In general, the evolution of TMES-based CCHP systems into smart multi-energy management systems for cities or districts in the future is a highly promising avenue. However, current economic analyses remain incomplete, and further exploration is needed, especially in the area “AI for energy storage,” which is crucial for the widespread adoption of TMES-based CCHP systems.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"19 2","pages":"117 - 143"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of progress in thermo-mechanical energy storage technologies for combined cooling, heating and power applications\",\"authors\":\"Jiaxing Huang, Yao Zhao, Jian Song, Shengqi Huang, Kai Wang, Zhenghua Rao, Yongliang Zhao, Liang Wang, Xi Wan, Yue Fei, Christos N. Markides\",\"doi\":\"10.1007/s11708-025-0998-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermo-mechanical energy storage (TMES) technologies have attracted significant attention due to their potential for grid-scale, long-duration electricity storage, offering advantages such as minimal geographical constraints, low environmental impact, and long operational lifespans. A key benefit of TMES systems is their ability to perform energy conversion steps that enable interaction with both thermal energy consumers and prosumers, effectively functioning as combined cooling, heating and power (CCHP) systems. This paper reviews recent progress in various TMES technologies, focusing on compressed-air energy storage (CAES), liquid-air energy storage (LAES), pumped-thermal electricity storage (PTES, also known as Carnot battery), and carbon dioxide energy storage (CES), while exploring their potential applications as extended CCHP systems for trigeneration. Techno-economic analysis indicate that TMES-based CCHP systems can achieve roundtrip (power-to-power) efficiencies ranging from 40% to 130%, overall (trigeneration) energy efficiencies from 70% to 190%, and a levelized cost of energy (with cooling and heating outputs converted into equivalent electricity) between 70 and 200 $/MWh. In general, the evolution of TMES-based CCHP systems into smart multi-energy management systems for cities or districts in the future is a highly promising avenue. However, current economic analyses remain incomplete, and further exploration is needed, especially in the area “AI for energy storage,” which is crucial for the widespread adoption of TMES-based CCHP systems.</p></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"19 2\",\"pages\":\"117 - 143\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-025-0998-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-025-0998-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A review of progress in thermo-mechanical energy storage technologies for combined cooling, heating and power applications
Thermo-mechanical energy storage (TMES) technologies have attracted significant attention due to their potential for grid-scale, long-duration electricity storage, offering advantages such as minimal geographical constraints, low environmental impact, and long operational lifespans. A key benefit of TMES systems is their ability to perform energy conversion steps that enable interaction with both thermal energy consumers and prosumers, effectively functioning as combined cooling, heating and power (CCHP) systems. This paper reviews recent progress in various TMES technologies, focusing on compressed-air energy storage (CAES), liquid-air energy storage (LAES), pumped-thermal electricity storage (PTES, also known as Carnot battery), and carbon dioxide energy storage (CES), while exploring their potential applications as extended CCHP systems for trigeneration. Techno-economic analysis indicate that TMES-based CCHP systems can achieve roundtrip (power-to-power) efficiencies ranging from 40% to 130%, overall (trigeneration) energy efficiencies from 70% to 190%, and a levelized cost of energy (with cooling and heating outputs converted into equivalent electricity) between 70 and 200 $/MWh. In general, the evolution of TMES-based CCHP systems into smart multi-energy management systems for cities or districts in the future is a highly promising avenue. However, current economic analyses remain incomplete, and further exploration is needed, especially in the area “AI for energy storage,” which is crucial for the widespread adoption of TMES-based CCHP systems.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue