电催化CO(2)还原乙烯催化剂优化趋势的确定

EES catalysis Pub Date : 2025-03-27 DOI:10.1039/D4EY00287C
Stefan J. Raaijman, Maarten P. Schellekens, Yoon Jun Son, Marc T. M. Koper and Paul J. Corbett
{"title":"电催化CO(2)还原乙烯催化剂优化趋势的确定","authors":"Stefan J. Raaijman, Maarten P. Schellekens, Yoon Jun Son, Marc T. M. Koper and Paul J. Corbett","doi":"10.1039/D4EY00287C","DOIUrl":null,"url":null,"abstract":"<p >In this perspective we analyze copper and copper-based electrocatalysts with high ethylene selectivities from the literature to identify global catalyst formulation trends that allow for making catalysts with improved ethylene performance for industrial application. From our analysis, we identified six trends that can aid researchers in creating novel, high selectivity electrocatalysts for the electroreduction of CO<small><sub>(2)</sub></small> to ethylene. These trends were as follows. (i) Tandem-type and (ii) supported-type catalysts perform relatively more poorly than other types of systems. Engineering the nanoenvironment through implementing nanoconfining morphologies (iii) or <em>via</em> the addition of polymeric additives (iv) brings about significant C<small><sub>2</sub></small>H<small><sub>4</sub></small> selectivity enhancements. (v) Catalyst heterogeneity is an important driver for improving C<small><sub>2</sub></small>H<small><sub>4</sub></small> selectivity. (vi) Both CO<small><sub>2</sub></small> and CO can serve as feedstock with little impact on maximum achievable C<small><sub>2</sub></small>H<small><sub>4</sub></small> selectivity. As we identified during our study that the field lacks reproducibility of catalyst performance and independent reproduction of results, we propose several strategies on how to improve. Finally, we discuss changes that authors can implement to improve the industrial relevancy of their work.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 3","pages":" 386-406"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00287c?page=search","citationCount":"0","resultStr":"{\"title\":\"Identification of catalyst optimization trends for electrocatalytic CO(2) reduction to ethylene†\",\"authors\":\"Stefan J. Raaijman, Maarten P. Schellekens, Yoon Jun Son, Marc T. M. Koper and Paul J. Corbett\",\"doi\":\"10.1039/D4EY00287C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In this perspective we analyze copper and copper-based electrocatalysts with high ethylene selectivities from the literature to identify global catalyst formulation trends that allow for making catalysts with improved ethylene performance for industrial application. From our analysis, we identified six trends that can aid researchers in creating novel, high selectivity electrocatalysts for the electroreduction of CO<small><sub>(2)</sub></small> to ethylene. These trends were as follows. (i) Tandem-type and (ii) supported-type catalysts perform relatively more poorly than other types of systems. Engineering the nanoenvironment through implementing nanoconfining morphologies (iii) or <em>via</em> the addition of polymeric additives (iv) brings about significant C<small><sub>2</sub></small>H<small><sub>4</sub></small> selectivity enhancements. (v) Catalyst heterogeneity is an important driver for improving C<small><sub>2</sub></small>H<small><sub>4</sub></small> selectivity. (vi) Both CO<small><sub>2</sub></small> and CO can serve as feedstock with little impact on maximum achievable C<small><sub>2</sub></small>H<small><sub>4</sub></small> selectivity. As we identified during our study that the field lacks reproducibility of catalyst performance and independent reproduction of results, we propose several strategies on how to improve. Finally, we discuss changes that authors can implement to improve the industrial relevancy of their work.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 3\",\"pages\":\" 386-406\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d4ey00287c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00287c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d4ey00287c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从这个角度来看,我们从文献中分析了具有高乙烯选择性的铜和铜基电催化剂,以确定全球催化剂配方趋势,这些趋势允许制造具有改善乙烯性能的催化剂用于工业应用。从我们的分析中,我们确定了六个趋势,可以帮助研究人员创造新的、高选择性的电催化剂,用于CO(2)电还原成乙烯。这些趋势如下。(1)串联型和(2)负载型催化剂的性能相对较差。通过实现纳米限制形态(iii)或通过添加聚合物添加剂(iv)来改造纳米环境,可以显著增强C2H4的选择性。(v)催化剂非均质性是提高C2H4选择性的重要驱动因素。(vi) CO2和CO均可作为原料,对C2H4可达到的最大选择性影响不大。正如我们在研究中发现的,该领域缺乏催化剂性能的可重复性和结果的独立再现,我们提出了一些如何改进的策略。最后,我们讨论了作者可以实施的改变,以提高其工作的行业相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of catalyst optimization trends for electrocatalytic CO(2) reduction to ethylene†

In this perspective we analyze copper and copper-based electrocatalysts with high ethylene selectivities from the literature to identify global catalyst formulation trends that allow for making catalysts with improved ethylene performance for industrial application. From our analysis, we identified six trends that can aid researchers in creating novel, high selectivity electrocatalysts for the electroreduction of CO(2) to ethylene. These trends were as follows. (i) Tandem-type and (ii) supported-type catalysts perform relatively more poorly than other types of systems. Engineering the nanoenvironment through implementing nanoconfining morphologies (iii) or via the addition of polymeric additives (iv) brings about significant C2H4 selectivity enhancements. (v) Catalyst heterogeneity is an important driver for improving C2H4 selectivity. (vi) Both CO2 and CO can serve as feedstock with little impact on maximum achievable C2H4 selectivity. As we identified during our study that the field lacks reproducibility of catalyst performance and independent reproduction of results, we propose several strategies on how to improve. Finally, we discuss changes that authors can implement to improve the industrial relevancy of their work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信