{"title":"通过联合协同注意算法分析疾病引起的人体运动模式变化","authors":"Jingyao Chen;Chen Wang;Zeng-Guang Hou;Pingye Deng;Liang Peng;Pu Zhang;Ningcun Xu","doi":"10.1109/TNSRE.2025.3563466","DOIUrl":null,"url":null,"abstract":"Objective: Aiming to quantify and analyze disease-induced alterations in human movement, we explored the co-joint synergy patterns in locomotion through a vision-based co-joint synergistic attention algorithm. Methods: We recruited 30 participants (including 15 post-stroke patients and 15 healthy individuals) and extracted their 3D visual motor data for the joint feature coupling by a serial attention module. And we designed a dual-stream classification module for preclassification based on the spatio-temporal characteristics of the data. Then we extracted the important co-joint synergy patterns by a looping mask module and the co-joint synergy variability score. Results: Through the co-joint synergistic attention algorithm, we found significant differences in joint synergy patterns between post-stroke patients and healthy individuals during upper and lower limb tasks. Furthermore, we obtained quantitative results on the effect of specific diseases on co-joint synergy patterns among healthy individuals and patients. The validity of the result was verified by comparing with the commonly used Non-negative Matrix Factorization (NMF) and the Muscle Synergy Fractionation (MSF) methods. Conclusion: Specific diseases can cause changes in human movement patterns, and by the co-joint synergistic attention algorithm we can analyze the alterations in joint synergies and also quantify the importance of different synergy groups. Significance: This research proposes a new approach for identifying specific co-joint synergy patterns arising from disease-altered biomechanics, which provides a new targeted protocol for the rehabilitation process.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"1695-1706"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10974996","citationCount":"0","resultStr":"{\"title\":\"Analysis of Disease-Induced Changes in Human Locomotor Patterns Through the Co-Joint Synergistic Attention Algorithm\",\"authors\":\"Jingyao Chen;Chen Wang;Zeng-Guang Hou;Pingye Deng;Liang Peng;Pu Zhang;Ningcun Xu\",\"doi\":\"10.1109/TNSRE.2025.3563466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Aiming to quantify and analyze disease-induced alterations in human movement, we explored the co-joint synergy patterns in locomotion through a vision-based co-joint synergistic attention algorithm. Methods: We recruited 30 participants (including 15 post-stroke patients and 15 healthy individuals) and extracted their 3D visual motor data for the joint feature coupling by a serial attention module. And we designed a dual-stream classification module for preclassification based on the spatio-temporal characteristics of the data. Then we extracted the important co-joint synergy patterns by a looping mask module and the co-joint synergy variability score. Results: Through the co-joint synergistic attention algorithm, we found significant differences in joint synergy patterns between post-stroke patients and healthy individuals during upper and lower limb tasks. Furthermore, we obtained quantitative results on the effect of specific diseases on co-joint synergy patterns among healthy individuals and patients. The validity of the result was verified by comparing with the commonly used Non-negative Matrix Factorization (NMF) and the Muscle Synergy Fractionation (MSF) methods. Conclusion: Specific diseases can cause changes in human movement patterns, and by the co-joint synergistic attention algorithm we can analyze the alterations in joint synergies and also quantify the importance of different synergy groups. Significance: This research proposes a new approach for identifying specific co-joint synergy patterns arising from disease-altered biomechanics, which provides a new targeted protocol for the rehabilitation process.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"33 \",\"pages\":\"1695-1706\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10974996\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10974996/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10974996/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Analysis of Disease-Induced Changes in Human Locomotor Patterns Through the Co-Joint Synergistic Attention Algorithm
Objective: Aiming to quantify and analyze disease-induced alterations in human movement, we explored the co-joint synergy patterns in locomotion through a vision-based co-joint synergistic attention algorithm. Methods: We recruited 30 participants (including 15 post-stroke patients and 15 healthy individuals) and extracted their 3D visual motor data for the joint feature coupling by a serial attention module. And we designed a dual-stream classification module for preclassification based on the spatio-temporal characteristics of the data. Then we extracted the important co-joint synergy patterns by a looping mask module and the co-joint synergy variability score. Results: Through the co-joint synergistic attention algorithm, we found significant differences in joint synergy patterns between post-stroke patients and healthy individuals during upper and lower limb tasks. Furthermore, we obtained quantitative results on the effect of specific diseases on co-joint synergy patterns among healthy individuals and patients. The validity of the result was verified by comparing with the commonly used Non-negative Matrix Factorization (NMF) and the Muscle Synergy Fractionation (MSF) methods. Conclusion: Specific diseases can cause changes in human movement patterns, and by the co-joint synergistic attention algorithm we can analyze the alterations in joint synergies and also quantify the importance of different synergy groups. Significance: This research proposes a new approach for identifying specific co-joint synergy patterns arising from disease-altered biomechanics, which provides a new targeted protocol for the rehabilitation process.
期刊介绍:
Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.