利用无畸变参数化构形空间规划凸集图中的短路径

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Shruti Garg;Thomas Cohn;Russ Tedrake
{"title":"利用无畸变参数化构形空间规划凸集图中的短路径","authors":"Shruti Garg;Thomas Cohn;Russ Tedrake","doi":"10.1109/LRA.2025.3564204","DOIUrl":null,"url":null,"abstract":"Optimization based motion planning provides a useful modeling framework through various costs and constraints. Using Graph of Convex Sets (GCS) for trajectory optimization gives guarantees of feasibility and optimality by representing configuration space as the finite union of convex sets. Nonlinear parametrization can be used to extend this technique (to handle cases such as kinematic loops), but this often distorts distances such that convex objectives yield paths suboptimal in the original space. We present a method to extend GCS to nonconvex objectives, allowing us to “undistort” the optimization landscape while maintaining feasibility guarantees. We demonstrate our method's efficacy on three different robotic planning domains: a bimanual robot moving an object with both arms, the set of 3D rotations using Euler angles, and a rational parametrization of kinematics that enables certifying regions as collision free. Across the board, our method significantly improves path length and trajectory duration with only a minimal increase in runtime.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"6183-6190"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Planning Shorter Paths in Graphs of Convex Sets by Undistorting Parametrized Configuration Spaces\",\"authors\":\"Shruti Garg;Thomas Cohn;Russ Tedrake\",\"doi\":\"10.1109/LRA.2025.3564204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization based motion planning provides a useful modeling framework through various costs and constraints. Using Graph of Convex Sets (GCS) for trajectory optimization gives guarantees of feasibility and optimality by representing configuration space as the finite union of convex sets. Nonlinear parametrization can be used to extend this technique (to handle cases such as kinematic loops), but this often distorts distances such that convex objectives yield paths suboptimal in the original space. We present a method to extend GCS to nonconvex objectives, allowing us to “undistort” the optimization landscape while maintaining feasibility guarantees. We demonstrate our method's efficacy on three different robotic planning domains: a bimanual robot moving an object with both arms, the set of 3D rotations using Euler angles, and a rational parametrization of kinematics that enables certifying regions as collision free. Across the board, our method significantly improves path length and trajectory duration with only a minimal increase in runtime.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 6\",\"pages\":\"6183-6190\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10976384/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10976384/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

基于优化的运动规划通过各种成本和约束提供了一个有用的建模框架。利用凸集图(GCS)将构型空间表示为凸集的有限并,保证了轨迹优化的可行性和最优性。非线性参数化可以用于扩展该技术(以处理运动回路等情况),但这通常会扭曲距离,从而使凸目标在原始空间中产生次优路径。我们提出了一种将GCS扩展到非凸目标的方法,允许我们在保持可行性保证的同时“不扭曲”优化景观。我们在三个不同的机器人规划领域展示了我们的方法的有效性:一个双手机器人用双臂移动物体,使用欧拉角的3D旋转集,以及一个合理的运动学参数化,使证明区域无碰撞。总的来说,我们的方法显著改善了路径长度和轨迹持续时间,而运行时间只增加了最小的增量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Planning Shorter Paths in Graphs of Convex Sets by Undistorting Parametrized Configuration Spaces
Optimization based motion planning provides a useful modeling framework through various costs and constraints. Using Graph of Convex Sets (GCS) for trajectory optimization gives guarantees of feasibility and optimality by representing configuration space as the finite union of convex sets. Nonlinear parametrization can be used to extend this technique (to handle cases such as kinematic loops), but this often distorts distances such that convex objectives yield paths suboptimal in the original space. We present a method to extend GCS to nonconvex objectives, allowing us to “undistort” the optimization landscape while maintaining feasibility guarantees. We demonstrate our method's efficacy on three different robotic planning domains: a bimanual robot moving an object with both arms, the set of 3D rotations using Euler angles, and a rational parametrization of kinematics that enables certifying regions as collision free. Across the board, our method significantly improves path length and trajectory duration with only a minimal increase in runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信