基于地图数据的混合交通道路使用者特定轨迹预测

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Hidde J-H. Boekema;Emran Yasser Moustafa;Julian F.P. Kooij;Dariu M. Gavrila
{"title":"基于地图数据的混合交通道路使用者特定轨迹预测","authors":"Hidde J-H. Boekema;Emran Yasser Moustafa;Julian F.P. Kooij;Dariu M. Gavrila","doi":"10.1109/LRA.2025.3564746","DOIUrl":null,"url":null,"abstract":"This paper studies road user trajectory prediction in mixed traffic, i.e. where vehicles and Vulnerable Road Users (VRUs, i.e. pedestrians, cyclists and other riders) closely share a common road space. We investigate if typical prediction components (scene graph representation, scene encoding, waypoint prediction, motion dynamics) should be specific to each road user class. Using the recent VRU-heavy View-of-Delft Prediction (VoD-P) dataset, we study several directions to improve the performance of the state-of-the-art map-based prediction models (PGP, TNT) in urban settings. First, we consider the use of class-specific map representations. Second, we investigate if the weights of different components of the model should be shared or separated by class. Finally, we augment VoD-P training data with automatically extracted trajectories from the 360-degree LiDAR scans by the recording vehicle. This data is made publicly available. We find that pre-training the model on auto-labels and making it class-specific leads to a reduction of up to 22.2<italic>%</i>, 20.0<italic>%</i>, and 18.2<italic>%</i> in minADE (<inline-formula><tex-math>$K = 10$</tex-math></inline-formula> samples) for pedestrians, cyclists, and vehicles, respectively.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 6","pages":"6159-6166"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Road User Specific Trajectory Prediction in Mixed Traffic Using Map Data\",\"authors\":\"Hidde J-H. Boekema;Emran Yasser Moustafa;Julian F.P. Kooij;Dariu M. Gavrila\",\"doi\":\"10.1109/LRA.2025.3564746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies road user trajectory prediction in mixed traffic, i.e. where vehicles and Vulnerable Road Users (VRUs, i.e. pedestrians, cyclists and other riders) closely share a common road space. We investigate if typical prediction components (scene graph representation, scene encoding, waypoint prediction, motion dynamics) should be specific to each road user class. Using the recent VRU-heavy View-of-Delft Prediction (VoD-P) dataset, we study several directions to improve the performance of the state-of-the-art map-based prediction models (PGP, TNT) in urban settings. First, we consider the use of class-specific map representations. Second, we investigate if the weights of different components of the model should be shared or separated by class. Finally, we augment VoD-P training data with automatically extracted trajectories from the 360-degree LiDAR scans by the recording vehicle. This data is made publicly available. We find that pre-training the model on auto-labels and making it class-specific leads to a reduction of up to 22.2<italic>%</i>, 20.0<italic>%</i>, and 18.2<italic>%</i> in minADE (<inline-formula><tex-math>$K = 10$</tex-math></inline-formula> samples) for pedestrians, cyclists, and vehicles, respectively.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"10 6\",\"pages\":\"6159-6166\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10977978/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10977978/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究混合交通中的道路使用者轨迹预测,即车辆和弱势道路使用者(vru,即行人、骑自行车的人和其他骑自行车的人)紧密共享一个共同的道路空间。我们研究了典型的预测组件(场景图表示、场景编码、路点预测、运动动力学)是否应该针对每个道路用户类别。利用最近的VRU-heavy View-of-Delft Prediction (VoD-P)数据集,我们研究了几个方向,以提高最先进的基于地图的预测模型(PGP, TNT)在城市环境中的性能。首先,我们考虑使用特定于类的映射表示。其次,我们研究了模型的不同组成部分的权重是否应该按类共享或分离。最后,我们通过记录车辆从360度激光雷达扫描中自动提取轨迹来增强VoD-P训练数据。这些数据是公开的。我们发现,在自动标签上对模型进行预训练并使其特定于类别,对于行人、骑自行车的人和车辆,minADE ($K = 10$ samples)分别减少了22.2%、20.0%和18.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Road User Specific Trajectory Prediction in Mixed Traffic Using Map Data
This paper studies road user trajectory prediction in mixed traffic, i.e. where vehicles and Vulnerable Road Users (VRUs, i.e. pedestrians, cyclists and other riders) closely share a common road space. We investigate if typical prediction components (scene graph representation, scene encoding, waypoint prediction, motion dynamics) should be specific to each road user class. Using the recent VRU-heavy View-of-Delft Prediction (VoD-P) dataset, we study several directions to improve the performance of the state-of-the-art map-based prediction models (PGP, TNT) in urban settings. First, we consider the use of class-specific map representations. Second, we investigate if the weights of different components of the model should be shared or separated by class. Finally, we augment VoD-P training data with automatically extracted trajectories from the 360-degree LiDAR scans by the recording vehicle. This data is made publicly available. We find that pre-training the model on auto-labels and making it class-specific leads to a reduction of up to 22.2%, 20.0%, and 18.2% in minADE ($K = 10$ samples) for pedestrians, cyclists, and vehicles, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信