EEGUnity:促进统一脑电数据集向大规模脑电模型的开源工具

IF 4.8 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Chengxuan Qin;Rui Yang;Wenlong You;Zhige Chen;Longsheng Zhu;Mengjie Huang;Zidong Wang
{"title":"EEGUnity:促进统一脑电数据集向大规模脑电模型的开源工具","authors":"Chengxuan Qin;Rui Yang;Wenlong You;Zhige Chen;Longsheng Zhu;Mengjie Huang;Zidong Wang","doi":"10.1109/TNSRE.2025.3565158","DOIUrl":null,"url":null,"abstract":"The increasing number of dispersed EEG dataset publications and the advancement of large-scale Electroencephalogram (EEG) models have increased the demand for practical tools to manage diverse EEG datasets. However, the inherent complexity of EEG data, characterized by variability in content data, metadata, and data formats, poses challenges for integrating multiple datasets and conducting large-scale EEG model research. To tackle the challenges, this paper introduces EEGUnity, an open-source tool that incorporates modules of \"EEG Parser\", \"Correction\", \"Batch Processing\", and \"Large Language Model Boost\". Leveraging the functionality of such modules, EEGUnity facilitates the efficient management of multiple EEG datasets, such as intelligent data structure inference, data cleaning, and data unification. In addition, the capabilities of EEGUnity ensure high data quality and consistency, providing a reliable foundation for large-scale EEG data research. EEGUnity is evaluated across 25 EEG datasets from different sources, offering several typical batch processing workflows. The results demonstrate the high performance and flexibility of EEGUnity in parsing and data processing. The project code is publicly available at github.com/Baizhige/EEGUnity.","PeriodicalId":13419,"journal":{"name":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","volume":"33 ","pages":"1653-1663"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979503","citationCount":"0","resultStr":"{\"title\":\"EEGUnity: Open-Source Tool in Facilitating Unified EEG Datasets Toward Large-Scale EEG Model\",\"authors\":\"Chengxuan Qin;Rui Yang;Wenlong You;Zhige Chen;Longsheng Zhu;Mengjie Huang;Zidong Wang\",\"doi\":\"10.1109/TNSRE.2025.3565158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing number of dispersed EEG dataset publications and the advancement of large-scale Electroencephalogram (EEG) models have increased the demand for practical tools to manage diverse EEG datasets. However, the inherent complexity of EEG data, characterized by variability in content data, metadata, and data formats, poses challenges for integrating multiple datasets and conducting large-scale EEG model research. To tackle the challenges, this paper introduces EEGUnity, an open-source tool that incorporates modules of \\\"EEG Parser\\\", \\\"Correction\\\", \\\"Batch Processing\\\", and \\\"Large Language Model Boost\\\". Leveraging the functionality of such modules, EEGUnity facilitates the efficient management of multiple EEG datasets, such as intelligent data structure inference, data cleaning, and data unification. In addition, the capabilities of EEGUnity ensure high data quality and consistency, providing a reliable foundation for large-scale EEG data research. EEGUnity is evaluated across 25 EEG datasets from different sources, offering several typical batch processing workflows. The results demonstrate the high performance and flexibility of EEGUnity in parsing and data processing. The project code is publicly available at github.com/Baizhige/EEGUnity.\",\"PeriodicalId\":13419,\"journal\":{\"name\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"volume\":\"33 \",\"pages\":\"1653-1663\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10979503\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Neural Systems and Rehabilitation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10979503/\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Neural Systems and Rehabilitation Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10979503/","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着越来越多的分散的脑电图数据发表和大规模脑电图(EEG)模型的进步,对管理各种脑电图数据集的实用工具的需求增加了。然而,脑电数据固有的复杂性,包括内容数据、元数据和数据格式的可变性,给整合多数据集和开展大规模脑电模型研究带来了挑战。为了应对这些挑战,本文引入了EEGUnity,这是一个集成了“EEG解析器”、“校正”、“批处理”和“大型语言模型增强”模块的开源工具。利用这些模块的功能,EEGUnity可以实现对多个EEG数据集的高效管理,如智能数据结构推断、数据清洗和数据统一。此外,EEGUnity的功能保证了数据的高质量和一致性,为大规模脑电数据研究提供了可靠的基础。EEGUnity对来自不同来源的25个EEG数据集进行了评估,提供了几种典型的批处理工作流程。结果表明EEGUnity在解析和数据处理方面具有较高的性能和灵活性。该项目代码可在github.com/Baizhige/EEGUnity上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EEGUnity: Open-Source Tool in Facilitating Unified EEG Datasets Toward Large-Scale EEG Model
The increasing number of dispersed EEG dataset publications and the advancement of large-scale Electroencephalogram (EEG) models have increased the demand for practical tools to manage diverse EEG datasets. However, the inherent complexity of EEG data, characterized by variability in content data, metadata, and data formats, poses challenges for integrating multiple datasets and conducting large-scale EEG model research. To tackle the challenges, this paper introduces EEGUnity, an open-source tool that incorporates modules of "EEG Parser", "Correction", "Batch Processing", and "Large Language Model Boost". Leveraging the functionality of such modules, EEGUnity facilitates the efficient management of multiple EEG datasets, such as intelligent data structure inference, data cleaning, and data unification. In addition, the capabilities of EEGUnity ensure high data quality and consistency, providing a reliable foundation for large-scale EEG data research. EEGUnity is evaluated across 25 EEG datasets from different sources, offering several typical batch processing workflows. The results demonstrate the high performance and flexibility of EEGUnity in parsing and data processing. The project code is publicly available at github.com/Baizhige/EEGUnity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
8.20%
发文量
479
审稿时长
6-12 weeks
期刊介绍: Rehabilitative and neural aspects of biomedical engineering, including functional electrical stimulation, acoustic dynamics, human performance measurement and analysis, nerve stimulation, electromyography, motor control and stimulation; and hardware and software applications for rehabilitation engineering and assistive devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信