基于多路径曼巴融合网络的高效rbt跟踪

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Fanghua Hong;Wanyu Wang;Andong Lu;Lei Liu;Qunjing Wang
{"title":"基于多路径曼巴融合网络的高效rbt跟踪","authors":"Fanghua Hong;Wanyu Wang;Andong Lu;Lei Liu;Qunjing Wang","doi":"10.1109/LSP.2025.3563123","DOIUrl":null,"url":null,"abstract":"RGBT tracking aims to fully exploit the complementary advantages of visible and infrared modalities to achieve robust tracking, thus the design of multimodal fusion network is crucial. However, existing methods typically adopt CNNs or Transformer networks to construct the fusion network, which poses a challenge in achieving a balance between performance and efficiency. To overcome this issue, we introduce an innovative visual state space (VSS) model, represented by Mamba, for RGBT tracking. In particular, we design a novel multi-path Mamba fusion network that achieves robust multimodal fusion capability while maintaining a linear overhead. First, we design a multi-path Mamba layer to sufficiently fuse two modalities in both global and local perspectives. Second, to alleviate the issue of inadequate VSS modeling in the channel dimension, we introduce a simple yet effective channel swapping layer. Extensive experiments conducted on four public RGBT tracking datasets demonstrate that our method surpasses existing state-of-the-art trackers. Notably, our fusion method achieves higher tracking performance compared to the well-known Transformer-based fusion approach (TBSI), while also achieving 92.8% and 80.5% reductions in parameter count and computational cost, respectively.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"1790-1794"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient RGBT Tracking via Multi-Path Mamba Fusion Network\",\"authors\":\"Fanghua Hong;Wanyu Wang;Andong Lu;Lei Liu;Qunjing Wang\",\"doi\":\"10.1109/LSP.2025.3563123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RGBT tracking aims to fully exploit the complementary advantages of visible and infrared modalities to achieve robust tracking, thus the design of multimodal fusion network is crucial. However, existing methods typically adopt CNNs or Transformer networks to construct the fusion network, which poses a challenge in achieving a balance between performance and efficiency. To overcome this issue, we introduce an innovative visual state space (VSS) model, represented by Mamba, for RGBT tracking. In particular, we design a novel multi-path Mamba fusion network that achieves robust multimodal fusion capability while maintaining a linear overhead. First, we design a multi-path Mamba layer to sufficiently fuse two modalities in both global and local perspectives. Second, to alleviate the issue of inadequate VSS modeling in the channel dimension, we introduce a simple yet effective channel swapping layer. Extensive experiments conducted on four public RGBT tracking datasets demonstrate that our method surpasses existing state-of-the-art trackers. Notably, our fusion method achieves higher tracking performance compared to the well-known Transformer-based fusion approach (TBSI), while also achieving 92.8% and 80.5% reductions in parameter count and computational cost, respectively.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"32 \",\"pages\":\"1790-1794\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10971948/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10971948/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

RGBT跟踪旨在充分利用可见光和红外模态的互补优势来实现鲁棒跟踪,因此多模态融合网络的设计至关重要。然而,现有的方法通常采用cnn或Transformer网络来构建融合网络,这对实现性能和效率之间的平衡提出了挑战。为了克服这个问题,我们引入了一种创新的视觉状态空间(VSS)模型,以Mamba为代表,用于RGBT跟踪。特别是,我们设计了一种新颖的多路径曼巴融合网络,在保持线性开销的同时实现了鲁棒的多模态融合能力。首先,我们设计了一个多路径曼巴层,以充分融合两种模式在全球和本地的观点。其次,为了缓解VSS在信道维度上建模不足的问题,我们引入了一个简单而有效的信道交换层。在四个公共lgbt跟踪数据集上进行的大量实验表明,我们的方法优于现有的最先进的跟踪器。值得注意的是,与众所周知的基于变压器的融合方法(TBSI)相比,我们的融合方法实现了更高的跟踪性能,同时参数计数和计算成本分别减少了92.8%和80.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient RGBT Tracking via Multi-Path Mamba Fusion Network
RGBT tracking aims to fully exploit the complementary advantages of visible and infrared modalities to achieve robust tracking, thus the design of multimodal fusion network is crucial. However, existing methods typically adopt CNNs or Transformer networks to construct the fusion network, which poses a challenge in achieving a balance between performance and efficiency. To overcome this issue, we introduce an innovative visual state space (VSS) model, represented by Mamba, for RGBT tracking. In particular, we design a novel multi-path Mamba fusion network that achieves robust multimodal fusion capability while maintaining a linear overhead. First, we design a multi-path Mamba layer to sufficiently fuse two modalities in both global and local perspectives. Second, to alleviate the issue of inadequate VSS modeling in the channel dimension, we introduce a simple yet effective channel swapping layer. Extensive experiments conducted on four public RGBT tracking datasets demonstrate that our method surpasses existing state-of-the-art trackers. Notably, our fusion method achieves higher tracking performance compared to the well-known Transformer-based fusion approach (TBSI), while also achieving 92.8% and 80.5% reductions in parameter count and computational cost, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信