Tingyu Lang , Shaoqi Hua , Xiaolei Liang , Yongxiu Yang
{"title":"解码脂质- poi连接:炎症因子的中介作用","authors":"Tingyu Lang , Shaoqi Hua , Xiaolei Liang , Yongxiu Yang","doi":"10.1016/j.chemphyslip.2025.105495","DOIUrl":null,"url":null,"abstract":"<div><div>POI is a highly heterogeneous, multifactorial condition, and dysregulated lipid metabolism has been implicated in its inflammatory pathogenesis This study is the first to systematically investigate causal relationships between 179 lipid species, 91 inflammatory factors, and POI using Two-Sample Mendelian Randomization (TSMR) and Multivariable Mendelian Randomization (MVMR). By integrating lipidomics and inflammatories data with POI from Genome-wide association study (GWAS) and FinnGen, we identified 18 causally significant lipids, including risk-elevating phosphatidylcholines and sphingomyelins, and protective triglycerides. Methodologically, we innovatively applied Bayesian Weighted Mendelian Randomization (BWMR) to confirm the robustness of causal estimates, addressing limitations of conventional MR in pleiotropy-prone metabolic networks. Biologically, we discovered IL-10 mediates 7.02–9.03 % of the effects of sphingomyelin (d40:2) and (d42:2) on POI, reconciling lipid-driven inflammation with ovarian aging—a mechanism previously unreported. Sensitivity analyses confirmed no horizontal pleiotropy (p > 0.05). This work establishes three advances: (1) First MR evidence linking specific lipid subclasses (not just broad categories) to POI; (2) Identification of IL-10 as a novel inflammatory mediator bridging sphingolipids and POI pathogenesis; (3) A validated framework combining MVMR and mediation analysis to disentangle direct/indirect effects in reproductive aging. Our findings provide clinically actionable insights: IL-10 emerge as potential biomarkers, while triglycerides highlight dietary/therapeutic targets. This mechanistic clarity advances POI research beyond prior observational associations into causal biology.</div></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":"269 ","pages":"Article 105495"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding the Lipid-POI connection: The mediating role of inflammatory factors\",\"authors\":\"Tingyu Lang , Shaoqi Hua , Xiaolei Liang , Yongxiu Yang\",\"doi\":\"10.1016/j.chemphyslip.2025.105495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>POI is a highly heterogeneous, multifactorial condition, and dysregulated lipid metabolism has been implicated in its inflammatory pathogenesis This study is the first to systematically investigate causal relationships between 179 lipid species, 91 inflammatory factors, and POI using Two-Sample Mendelian Randomization (TSMR) and Multivariable Mendelian Randomization (MVMR). By integrating lipidomics and inflammatories data with POI from Genome-wide association study (GWAS) and FinnGen, we identified 18 causally significant lipids, including risk-elevating phosphatidylcholines and sphingomyelins, and protective triglycerides. Methodologically, we innovatively applied Bayesian Weighted Mendelian Randomization (BWMR) to confirm the robustness of causal estimates, addressing limitations of conventional MR in pleiotropy-prone metabolic networks. Biologically, we discovered IL-10 mediates 7.02–9.03 % of the effects of sphingomyelin (d40:2) and (d42:2) on POI, reconciling lipid-driven inflammation with ovarian aging—a mechanism previously unreported. Sensitivity analyses confirmed no horizontal pleiotropy (p > 0.05). This work establishes three advances: (1) First MR evidence linking specific lipid subclasses (not just broad categories) to POI; (2) Identification of IL-10 as a novel inflammatory mediator bridging sphingolipids and POI pathogenesis; (3) A validated framework combining MVMR and mediation analysis to disentangle direct/indirect effects in reproductive aging. Our findings provide clinically actionable insights: IL-10 emerge as potential biomarkers, while triglycerides highlight dietary/therapeutic targets. This mechanistic clarity advances POI research beyond prior observational associations into causal biology.</div></div>\",\"PeriodicalId\":275,\"journal\":{\"name\":\"Chemistry and Physics of Lipids\",\"volume\":\"269 \",\"pages\":\"Article 105495\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry and Physics of Lipids\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009308425000313\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308425000313","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Decoding the Lipid-POI connection: The mediating role of inflammatory factors
POI is a highly heterogeneous, multifactorial condition, and dysregulated lipid metabolism has been implicated in its inflammatory pathogenesis This study is the first to systematically investigate causal relationships between 179 lipid species, 91 inflammatory factors, and POI using Two-Sample Mendelian Randomization (TSMR) and Multivariable Mendelian Randomization (MVMR). By integrating lipidomics and inflammatories data with POI from Genome-wide association study (GWAS) and FinnGen, we identified 18 causally significant lipids, including risk-elevating phosphatidylcholines and sphingomyelins, and protective triglycerides. Methodologically, we innovatively applied Bayesian Weighted Mendelian Randomization (BWMR) to confirm the robustness of causal estimates, addressing limitations of conventional MR in pleiotropy-prone metabolic networks. Biologically, we discovered IL-10 mediates 7.02–9.03 % of the effects of sphingomyelin (d40:2) and (d42:2) on POI, reconciling lipid-driven inflammation with ovarian aging—a mechanism previously unreported. Sensitivity analyses confirmed no horizontal pleiotropy (p > 0.05). This work establishes three advances: (1) First MR evidence linking specific lipid subclasses (not just broad categories) to POI; (2) Identification of IL-10 as a novel inflammatory mediator bridging sphingolipids and POI pathogenesis; (3) A validated framework combining MVMR and mediation analysis to disentangle direct/indirect effects in reproductive aging. Our findings provide clinically actionable insights: IL-10 emerge as potential biomarkers, while triglycerides highlight dietary/therapeutic targets. This mechanistic clarity advances POI research beyond prior observational associations into causal biology.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.