无授权海量访问中活跃用户和频率偏移的交错迭代结构联合检测算法

IF 2 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shibao Li, Zhihao Cui, Yujie Song, Ziyi Tang, Xuerong Cui, Jianhang Liu
{"title":"无授权海量访问中活跃用户和频率偏移的交错迭代结构联合检测算法","authors":"Shibao Li,&nbsp;Zhihao Cui,&nbsp;Yujie Song,&nbsp;Ziyi Tang,&nbsp;Xuerong Cui,&nbsp;Jianhang Liu","doi":"10.1016/j.phycom.2025.102697","DOIUrl":null,"url":null,"abstract":"<div><div>Great-free user access is an efficient access method for massive machine-type communications (mMTC). In the massive grant-free access, frequency offsets between users and base stations lead to the degradation of active user detection and channel estimation performance. Although traditional methods achieve joint estimation by extending the perceptual matrix using the grid method, they all ignore the effect of channel fading on joint detection, which can seriously degrade the accuracy of detection. In this paper, we propose an interleaved iterative-structured-vector approximation message passing (VAMP) algorithm, which makes use of the structuring of the extended perceptual matrix, and designs a minimum mean square error (MMSE) nonlinear vector noise reducer based on the Bayesian principle to eliminate the effect of channel fading on detection. In addition, in order to improve the detection accuracy, a two-layer alternating iterative search method is proposed, which effectively overcomes the performance loss caused by the frequency offset of the grid method estimation. Simulation results show that the proposed scheme is superior in active user detection and frequency offset detection accuracy compared with the traditional schemes.</div></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"71 ","pages":"Article 102697"},"PeriodicalIF":2.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interleaved iterative-structured joint detection algorithm for active users and frequency offsets in grant-free massive access\",\"authors\":\"Shibao Li,&nbsp;Zhihao Cui,&nbsp;Yujie Song,&nbsp;Ziyi Tang,&nbsp;Xuerong Cui,&nbsp;Jianhang Liu\",\"doi\":\"10.1016/j.phycom.2025.102697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Great-free user access is an efficient access method for massive machine-type communications (mMTC). In the massive grant-free access, frequency offsets between users and base stations lead to the degradation of active user detection and channel estimation performance. Although traditional methods achieve joint estimation by extending the perceptual matrix using the grid method, they all ignore the effect of channel fading on joint detection, which can seriously degrade the accuracy of detection. In this paper, we propose an interleaved iterative-structured-vector approximation message passing (VAMP) algorithm, which makes use of the structuring of the extended perceptual matrix, and designs a minimum mean square error (MMSE) nonlinear vector noise reducer based on the Bayesian principle to eliminate the effect of channel fading on detection. In addition, in order to improve the detection accuracy, a two-layer alternating iterative search method is proposed, which effectively overcomes the performance loss caused by the frequency offset of the grid method estimation. Simulation results show that the proposed scheme is superior in active user detection and frequency offset detection accuracy compared with the traditional schemes.</div></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"71 \",\"pages\":\"Article 102697\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874490725001004\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490725001004","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

大自由用户访问是大规模机器型通信(mMTC)的一种有效访问方法。在大量的免授权接入中,用户与基站之间的频率偏移会导致主动用户检测和信道估计性能的下降。传统方法虽然采用网格法对感知矩阵进行扩展来实现联合估计,但都忽略了信道衰落对联合检测的影响,严重降低了检测的精度。本文提出了一种交错迭代-结构向量逼近消息传递(VAMP)算法,该算法利用扩展感知矩阵的结构,设计了一种基于贝叶斯原理的最小均方误差(MMSE)非线性矢量降噪算法,以消除信道衰落对检测的影响。此外,为了提高检测精度,提出了一种两层交替迭代搜索方法,有效克服了网格法估计频率偏移带来的性能损失。仿真结果表明,该方案在主动用户检测和频偏检测精度方面均优于传统方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An interleaved iterative-structured joint detection algorithm for active users and frequency offsets in grant-free massive access
Great-free user access is an efficient access method for massive machine-type communications (mMTC). In the massive grant-free access, frequency offsets between users and base stations lead to the degradation of active user detection and channel estimation performance. Although traditional methods achieve joint estimation by extending the perceptual matrix using the grid method, they all ignore the effect of channel fading on joint detection, which can seriously degrade the accuracy of detection. In this paper, we propose an interleaved iterative-structured-vector approximation message passing (VAMP) algorithm, which makes use of the structuring of the extended perceptual matrix, and designs a minimum mean square error (MMSE) nonlinear vector noise reducer based on the Bayesian principle to eliminate the effect of channel fading on detection. In addition, in order to improve the detection accuracy, a two-layer alternating iterative search method is proposed, which effectively overcomes the performance loss caused by the frequency offset of the grid method estimation. Simulation results show that the proposed scheme is superior in active user detection and frequency offset detection accuracy compared with the traditional schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Communication
Physical Communication ENGINEERING, ELECTRICAL & ELECTRONICTELECO-TELECOMMUNICATIONS
CiteScore
5.00
自引率
9.10%
发文量
212
审稿时长
55 days
期刊介绍: PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published. Topics of interest include but are not limited to: Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信