浮力下超临界CO2湍流普朗特数的可解释机器学习模型

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS
Ruizeng Zhang , Zhengwei Yang , Yu Liu , Qinggang Qiu , Xiaojing Zhu
{"title":"浮力下超临界CO2湍流普朗特数的可解释机器学习模型","authors":"Ruizeng Zhang ,&nbsp;Zhengwei Yang ,&nbsp;Yu Liu ,&nbsp;Qinggang Qiu ,&nbsp;Xiaojing Zhu","doi":"10.1016/j.applthermaleng.2025.126744","DOIUrl":null,"url":null,"abstract":"<div><div>Existing studies identify the failure of turbulent heat flux modeling—particularly the constant turbulent Prandtl number (<em>Pr<sub>t</sub></em>) assumption—as the primary cause of inaccurate heat transfer deterioration (HTD) predictions in supercritical fluids. To address this, we propose a dynamic <em>Pr<sub>t</sub></em> prediction framework based on interpretable machine learning (ML) to elucidate <em>Pr<sub>t</sub></em> evolution under buoyancy effects. The model comprises a <em>Pr<sub>t</sub></em> distribution framework integrating the thermophysical parameter (<em>Pr</em>) and a comprehensive factor <em>f<sub>sp</sub></em> that captures system parameter influences, and an ML module that nonlinearly maps multi-parameter effects into <em>f<sub>sp</sub></em>, overcoming the limitations of traditional empirical correlations. Results show that the model significantly improves HTD prediction accuracy and reveals that strong buoyancy necessitates a lower <em>Pr<sub>t</sub></em> to compensate for the turbulent diffusion attenuation. SHAP-based interpretability analysis further quantifies parameter influence hierarchies: heat flux and mass flow rate dominate HTD, inlet temperature, and pressure act independently without interfering with the effects of other parameters on heat transfer, and diameter amplifies the negative effects of heat flux and mass flow rate through synergistic interactions. This study establishes a high-accuracy, mechanically interpretable modeling paradigm for optimizing supercritical systems.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"274 ","pages":"Article 126744"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An interpretable machine learning-based model of turbulent Prandtl number for supercritical CO2 under buoyancy\",\"authors\":\"Ruizeng Zhang ,&nbsp;Zhengwei Yang ,&nbsp;Yu Liu ,&nbsp;Qinggang Qiu ,&nbsp;Xiaojing Zhu\",\"doi\":\"10.1016/j.applthermaleng.2025.126744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Existing studies identify the failure of turbulent heat flux modeling—particularly the constant turbulent Prandtl number (<em>Pr<sub>t</sub></em>) assumption—as the primary cause of inaccurate heat transfer deterioration (HTD) predictions in supercritical fluids. To address this, we propose a dynamic <em>Pr<sub>t</sub></em> prediction framework based on interpretable machine learning (ML) to elucidate <em>Pr<sub>t</sub></em> evolution under buoyancy effects. The model comprises a <em>Pr<sub>t</sub></em> distribution framework integrating the thermophysical parameter (<em>Pr</em>) and a comprehensive factor <em>f<sub>sp</sub></em> that captures system parameter influences, and an ML module that nonlinearly maps multi-parameter effects into <em>f<sub>sp</sub></em>, overcoming the limitations of traditional empirical correlations. Results show that the model significantly improves HTD prediction accuracy and reveals that strong buoyancy necessitates a lower <em>Pr<sub>t</sub></em> to compensate for the turbulent diffusion attenuation. SHAP-based interpretability analysis further quantifies parameter influence hierarchies: heat flux and mass flow rate dominate HTD, inlet temperature, and pressure act independently without interfering with the effects of other parameters on heat transfer, and diameter amplifies the negative effects of heat flux and mass flow rate through synergistic interactions. This study establishes a high-accuracy, mechanically interpretable modeling paradigm for optimizing supercritical systems.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"274 \",\"pages\":\"Article 126744\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431125013365\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431125013365","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

现有的研究表明,紊流热流模型的失败——特别是紊流普朗特数(Prt)假设的恒定——是超临界流体中传热恶化(HTD)预测不准确的主要原因。为了解决这个问题,我们提出了一个基于可解释机器学习(ML)的动态Prt预测框架,以阐明浮力作用下的Prt演化。该模型包括一个整合热物理参数(Pr)和捕获系统参数影响的综合因子fsp的Prt分布框架,以及一个将多参数效应非线性映射到fsp的ML模块,克服了传统经验相关性的局限性。结果表明,该模型显著提高了HTD预测精度,并揭示了强浮力需要较低的Prt来补偿湍流扩散衰减。基于shap的可解释性分析进一步量化了参数影响层次:热流密度和质量流量占主导地位,进口温度和压力独立作用,不干扰其他参数对传热的影响,直径通过协同作用放大了热流密度和质量流量的负面影响。本研究为优化超临界系统建立了一个高精度、机械可解释的建模范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An interpretable machine learning-based model of turbulent Prandtl number for supercritical CO2 under buoyancy
Existing studies identify the failure of turbulent heat flux modeling—particularly the constant turbulent Prandtl number (Prt) assumption—as the primary cause of inaccurate heat transfer deterioration (HTD) predictions in supercritical fluids. To address this, we propose a dynamic Prt prediction framework based on interpretable machine learning (ML) to elucidate Prt evolution under buoyancy effects. The model comprises a Prt distribution framework integrating the thermophysical parameter (Pr) and a comprehensive factor fsp that captures system parameter influences, and an ML module that nonlinearly maps multi-parameter effects into fsp, overcoming the limitations of traditional empirical correlations. Results show that the model significantly improves HTD prediction accuracy and reveals that strong buoyancy necessitates a lower Prt to compensate for the turbulent diffusion attenuation. SHAP-based interpretability analysis further quantifies parameter influence hierarchies: heat flux and mass flow rate dominate HTD, inlet temperature, and pressure act independently without interfering with the effects of other parameters on heat transfer, and diameter amplifies the negative effects of heat flux and mass flow rate through synergistic interactions. This study establishes a high-accuracy, mechanically interpretable modeling paradigm for optimizing supercritical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信