{"title":"中亚伊犁盆地吸光杂质对辐射强迫和融雪影响的研究","authors":"Biao Wu , Na Wu , Gulnura Issanova , Yongxiao Ge , Jiayu Chen , Ayinigaer Adili , Jilili Abuduwaili , Mukhiddin Juliev","doi":"10.1016/j.envres.2025.121768","DOIUrl":null,"url":null,"abstract":"<div><div>Light-absorbing impurities (LAIs), such as mineral dust (MD), organic carbon (OC), and black carbon (BC), deposited in snow, can reduce snow albedo and accelerate snowmelt. The Ili Basin, influenced by its unique geography and westerly atmospheric circulation, is a critical region for LAI deposition. However, quantitative assessments on the impact of LAIs on snow in this region remain limited. This study investigated the spatial distribution of LAIs in snow and provided a quantitative evaluation of the effects of MD and BC on snow albedo, radiative forcing, and snowmelt duration through sampling analysis and model simulations. The results revealed that the Kunes River Basin in the eastern Ili Basin exhibited relatively high concentrations of MD. In contrast, the southwestern Tekes River Basin showed relatively high concentrations of OC and BC. Among the impurities, MD plays a dominant role in the reduction of snow albedo and has a greater effect on the absorption of solar radiation by snow than BC, while MD is the most important light-absorbing impurity responsible for the reduction in the number of snow-melting days in the Ili Basin. Under the combined influence of MD and BC, the snowmelt period in the Ili Basin was reduced by 2.19 ± 1.43 to 7.31 ± 4.76 days. This study provides an initial understanding of the characteristics of LAIs in snow and their effects on snowmelt within the Ili Basin, offering essential basic data for future research on the influence of LAIs on snowmelt runoff and hydrological processes in this region.</div></div>","PeriodicalId":312,"journal":{"name":"Environmental Research","volume":"279 ","pages":"Article 121768"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into the impact of light-absorbing impurities on radiative forcing and snowmelt in the Ili Basin in Central Asia\",\"authors\":\"Biao Wu , Na Wu , Gulnura Issanova , Yongxiao Ge , Jiayu Chen , Ayinigaer Adili , Jilili Abuduwaili , Mukhiddin Juliev\",\"doi\":\"10.1016/j.envres.2025.121768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Light-absorbing impurities (LAIs), such as mineral dust (MD), organic carbon (OC), and black carbon (BC), deposited in snow, can reduce snow albedo and accelerate snowmelt. The Ili Basin, influenced by its unique geography and westerly atmospheric circulation, is a critical region for LAI deposition. However, quantitative assessments on the impact of LAIs on snow in this region remain limited. This study investigated the spatial distribution of LAIs in snow and provided a quantitative evaluation of the effects of MD and BC on snow albedo, radiative forcing, and snowmelt duration through sampling analysis and model simulations. The results revealed that the Kunes River Basin in the eastern Ili Basin exhibited relatively high concentrations of MD. In contrast, the southwestern Tekes River Basin showed relatively high concentrations of OC and BC. Among the impurities, MD plays a dominant role in the reduction of snow albedo and has a greater effect on the absorption of solar radiation by snow than BC, while MD is the most important light-absorbing impurity responsible for the reduction in the number of snow-melting days in the Ili Basin. Under the combined influence of MD and BC, the snowmelt period in the Ili Basin was reduced by 2.19 ± 1.43 to 7.31 ± 4.76 days. This study provides an initial understanding of the characteristics of LAIs in snow and their effects on snowmelt within the Ili Basin, offering essential basic data for future research on the influence of LAIs on snowmelt runoff and hydrological processes in this region.</div></div>\",\"PeriodicalId\":312,\"journal\":{\"name\":\"Environmental Research\",\"volume\":\"279 \",\"pages\":\"Article 121768\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013935125010199\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013935125010199","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Insights into the impact of light-absorbing impurities on radiative forcing and snowmelt in the Ili Basin in Central Asia
Light-absorbing impurities (LAIs), such as mineral dust (MD), organic carbon (OC), and black carbon (BC), deposited in snow, can reduce snow albedo and accelerate snowmelt. The Ili Basin, influenced by its unique geography and westerly atmospheric circulation, is a critical region for LAI deposition. However, quantitative assessments on the impact of LAIs on snow in this region remain limited. This study investigated the spatial distribution of LAIs in snow and provided a quantitative evaluation of the effects of MD and BC on snow albedo, radiative forcing, and snowmelt duration through sampling analysis and model simulations. The results revealed that the Kunes River Basin in the eastern Ili Basin exhibited relatively high concentrations of MD. In contrast, the southwestern Tekes River Basin showed relatively high concentrations of OC and BC. Among the impurities, MD plays a dominant role in the reduction of snow albedo and has a greater effect on the absorption of solar radiation by snow than BC, while MD is the most important light-absorbing impurity responsible for the reduction in the number of snow-melting days in the Ili Basin. Under the combined influence of MD and BC, the snowmelt period in the Ili Basin was reduced by 2.19 ± 1.43 to 7.31 ± 4.76 days. This study provides an initial understanding of the characteristics of LAIs in snow and their effects on snowmelt within the Ili Basin, offering essential basic data for future research on the influence of LAIs on snowmelt runoff and hydrological processes in this region.
期刊介绍:
The Environmental Research journal presents a broad range of interdisciplinary research, focused on addressing worldwide environmental concerns and featuring innovative findings. Our publication strives to explore relevant anthropogenic issues across various environmental sectors, showcasing practical applications in real-life settings.