Zehong Tian , Yufeng Zhang , Bei Liu , Lingke Li , Mingyu Li , Enze Zhou , Yameng Qi , Yalin Wu , Zhilin Li , Zishuai Zhou , Miaomiao Cui , Fuhui Wang , Dake Xu
{"title":"希瓦氏菌MR-1对5Cr管线钢耐腐蚀性能的影响","authors":"Zehong Tian , Yufeng Zhang , Bei Liu , Lingke Li , Mingyu Li , Enze Zhou , Yameng Qi , Yalin Wu , Zhilin Li , Zishuai Zhou , Miaomiao Cui , Fuhui Wang , Dake Xu","doi":"10.1016/j.colcom.2025.100841","DOIUrl":null,"url":null,"abstract":"<div><div>Novel Cr-alloyed pipeline steels were developed, demonstrating exceptional resistance to microbiologically influenced corrosion (MIC). Particularly, the 5.0Cr steel exhibited remarkable mechanical properties with ultimate tensile strength reaching 878 MPa (1.25-fold higher than conventional X80 steel) while maintaining the elongation. In <em>Shewanella oneidensis</em> MR-1-containing environments, 5.0Cr steel displayed significantly lower corrosion metrics: weight loss (0.8 ± 0.3 mg cm<sup>−2</sup> vs. 18.1 ± 2.9 mg cm<sup>−2</sup> for X80 steel) and maximum pit depth (4.9 μm vs. 18.8 μm). This enhanced MIC resistance stems from a Cr-rich oxide layer that simultaneously inhibits bacterial adhesion (50 % biofilm thickness reduction) and restricts extracellular electron transfer (EET), as evidenced by 14-fold higher charge transfer resistance (30 kΩ cm<sup>2</sup> vs. 2 kΩ cm<sup>2</sup> for X80 steel). The findings establish a dual-protection mechanism through interfacial engineering of pipeline steel surfaces.</div></div>","PeriodicalId":10483,"journal":{"name":"Colloid and Interface Science Communications","volume":"67 ","pages":"Article 100841"},"PeriodicalIF":4.7000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced microbiologically influenced corrosion resistance of 5Cr pipeline steel in the presence of Shewanella oneidensis MR-1\",\"authors\":\"Zehong Tian , Yufeng Zhang , Bei Liu , Lingke Li , Mingyu Li , Enze Zhou , Yameng Qi , Yalin Wu , Zhilin Li , Zishuai Zhou , Miaomiao Cui , Fuhui Wang , Dake Xu\",\"doi\":\"10.1016/j.colcom.2025.100841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Novel Cr-alloyed pipeline steels were developed, demonstrating exceptional resistance to microbiologically influenced corrosion (MIC). Particularly, the 5.0Cr steel exhibited remarkable mechanical properties with ultimate tensile strength reaching 878 MPa (1.25-fold higher than conventional X80 steel) while maintaining the elongation. In <em>Shewanella oneidensis</em> MR-1-containing environments, 5.0Cr steel displayed significantly lower corrosion metrics: weight loss (0.8 ± 0.3 mg cm<sup>−2</sup> vs. 18.1 ± 2.9 mg cm<sup>−2</sup> for X80 steel) and maximum pit depth (4.9 μm vs. 18.8 μm). This enhanced MIC resistance stems from a Cr-rich oxide layer that simultaneously inhibits bacterial adhesion (50 % biofilm thickness reduction) and restricts extracellular electron transfer (EET), as evidenced by 14-fold higher charge transfer resistance (30 kΩ cm<sup>2</sup> vs. 2 kΩ cm<sup>2</sup> for X80 steel). The findings establish a dual-protection mechanism through interfacial engineering of pipeline steel surfaces.</div></div>\",\"PeriodicalId\":10483,\"journal\":{\"name\":\"Colloid and Interface Science Communications\",\"volume\":\"67 \",\"pages\":\"Article 100841\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Interface Science Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215038225000251\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Interface Science Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215038225000251","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
新型的铬合金管线钢被开发出来,表现出优异的抗微生物影响腐蚀(MIC)能力。在保持伸长率的同时,5.0Cr钢的抗拉强度达到878 MPa,是普通X80钢的1.25倍。在含有希瓦氏菌mr -1的环境中,5.0Cr钢的腐蚀指标显著降低:重量损失(0.8±0.3 mg cm - 2, X80钢为18.1±2.9 mg cm - 2)和最大坑深(4.9 μm, X80钢为18.8 μm)。这种增强的MIC抗性源于富cr氧化层,它同时抑制细菌粘附(生物膜厚度减少50%)并限制细胞外电子转移(EET),如14倍的电荷转移电阻(30 kΩ cm2比X80钢的2 kΩ cm2)所证明的那样。研究结果通过管道钢表面的界面工程建立了一种双重保护机制。
Enhanced microbiologically influenced corrosion resistance of 5Cr pipeline steel in the presence of Shewanella oneidensis MR-1
Novel Cr-alloyed pipeline steels were developed, demonstrating exceptional resistance to microbiologically influenced corrosion (MIC). Particularly, the 5.0Cr steel exhibited remarkable mechanical properties with ultimate tensile strength reaching 878 MPa (1.25-fold higher than conventional X80 steel) while maintaining the elongation. In Shewanella oneidensis MR-1-containing environments, 5.0Cr steel displayed significantly lower corrosion metrics: weight loss (0.8 ± 0.3 mg cm−2 vs. 18.1 ± 2.9 mg cm−2 for X80 steel) and maximum pit depth (4.9 μm vs. 18.8 μm). This enhanced MIC resistance stems from a Cr-rich oxide layer that simultaneously inhibits bacterial adhesion (50 % biofilm thickness reduction) and restricts extracellular electron transfer (EET), as evidenced by 14-fold higher charge transfer resistance (30 kΩ cm2 vs. 2 kΩ cm2 for X80 steel). The findings establish a dual-protection mechanism through interfacial engineering of pipeline steel surfaces.
期刊介绍:
Colloid and Interface Science Communications provides a forum for the highest visibility and rapid publication of short initial reports on new fundamental concepts, research findings, and topical applications at the forefront of the increasingly interdisciplinary area of colloid and interface science.