甲烷化学环法合成气生产的金属氧化物平台:现状与展望

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Zoe Benedict , Debtanu Maiti , Yingchao Yang , Rebecca Fushimi
{"title":"甲烷化学环法合成气生产的金属氧化物平台:现状与展望","authors":"Zoe Benedict ,&nbsp;Debtanu Maiti ,&nbsp;Yingchao Yang ,&nbsp;Rebecca Fushimi","doi":"10.1016/j.mtsust.2025.101128","DOIUrl":null,"url":null,"abstract":"<div><div>The energy-efficient conversion of methane (CH<sub>4</sub>) to syngas represents a transformative pathway for advancing the global hydrocarbon economy. While conventional reforming processes are well established for producing syngas, a key intermediate for high-value fuels and chemicals, chemical looping reforming of methane offers a compelling alternative. By decoupling the reduction and oxidation steps, chemical looping approaches inherently minimize side reactions and enhance product selectivity. This review explores the critical material and economic considerations necessary for the development of robust, energy-efficient chemical looping technologies for dry reforming of methane. Metal oxide-supported catalysts, incorporating noble or transition metals, are the primary catalysts for chemical looping applications. Catalyst performance is governed not only by the intrinsic reactivity of active metals toward CH<sub>4</sub> and CO<sub>2</sub> activation but also by the redox behavior of oxide supports and the interfacial dynamics at the metal–support boundary. Key strategies for improving methane conversion efficiency and ensuring long-term catalyst durability include lowering C–H bond activation barriers, enhancing the oxygen storage capacity of supports, and engineering metal–support interactions to suppress coking and sintering. This article reviews the current challenges and opportunities in methane conversion technology and presents a comprehensive evaluation of catalysts comprising Ni, Fe, Co, and Pt dispersed on CeO<sub>2</sub>, ZrO<sub>2</sub>, Ce<sub>1-x</sub>Zr<sub>x</sub>O<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, and TiO<sub>2</sub> supports, with a parallel focus on economic feasibility and industrial scalability.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"31 ","pages":"Article 101128"},"PeriodicalIF":7.1000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal on metal oxide platforms for syngas production by chemical looping of methane: status and perspectives\",\"authors\":\"Zoe Benedict ,&nbsp;Debtanu Maiti ,&nbsp;Yingchao Yang ,&nbsp;Rebecca Fushimi\",\"doi\":\"10.1016/j.mtsust.2025.101128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The energy-efficient conversion of methane (CH<sub>4</sub>) to syngas represents a transformative pathway for advancing the global hydrocarbon economy. While conventional reforming processes are well established for producing syngas, a key intermediate for high-value fuels and chemicals, chemical looping reforming of methane offers a compelling alternative. By decoupling the reduction and oxidation steps, chemical looping approaches inherently minimize side reactions and enhance product selectivity. This review explores the critical material and economic considerations necessary for the development of robust, energy-efficient chemical looping technologies for dry reforming of methane. Metal oxide-supported catalysts, incorporating noble or transition metals, are the primary catalysts for chemical looping applications. Catalyst performance is governed not only by the intrinsic reactivity of active metals toward CH<sub>4</sub> and CO<sub>2</sub> activation but also by the redox behavior of oxide supports and the interfacial dynamics at the metal–support boundary. Key strategies for improving methane conversion efficiency and ensuring long-term catalyst durability include lowering C–H bond activation barriers, enhancing the oxygen storage capacity of supports, and engineering metal–support interactions to suppress coking and sintering. This article reviews the current challenges and opportunities in methane conversion technology and presents a comprehensive evaluation of catalysts comprising Ni, Fe, Co, and Pt dispersed on CeO<sub>2</sub>, ZrO<sub>2</sub>, Ce<sub>1-x</sub>Zr<sub>x</sub>O<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, SiO<sub>2</sub>, and TiO<sub>2</sub> supports, with a parallel focus on economic feasibility and industrial scalability.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"31 \",\"pages\":\"Article 101128\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234725000570\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725000570","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

将甲烷(CH4)高效转化为合成气是推动全球碳氢化合物经济发展的变革途径。合成气是高价值燃料和化学品的关键中间体,而传统的重整工艺在合成气生产方面已经很成熟,而甲烷的化学环重整提供了一个令人信服的替代方案。通过将还原和氧化步骤解耦,化学环化方法固有地减少了副反应并提高了产物的选择性。本综述探讨了开发稳健、节能的甲烷干重整化学环技术所需的关键材料和经济考虑因素。含贵金属或过渡金属的金属氧化物负载催化剂是化学环应用的主要催化剂。催化剂的性能不仅取决于活性金属对CH4和CO2活化的固有反应活性,还取决于氧化物载体的氧化还原行为和金属-载体边界的界面动力学。提高甲烷转化效率和确保催化剂长期耐久性的关键策略包括降低C-H键激活障碍,提高载体的储氧能力,以及设计金属-载体相互作用以抑制焦化和烧结。本文回顾了目前甲烷转化技术面临的挑战和机遇,并对分散在CeO2、ZrO2、Ce1-xZrxO2、Al2O3、SiO2和TiO2载体上的Ni、Fe、Co和Pt催化剂进行了综合评价,同时重点讨论了经济可行性和工业可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metal on metal oxide platforms for syngas production by chemical looping of methane: status and perspectives
The energy-efficient conversion of methane (CH4) to syngas represents a transformative pathway for advancing the global hydrocarbon economy. While conventional reforming processes are well established for producing syngas, a key intermediate for high-value fuels and chemicals, chemical looping reforming of methane offers a compelling alternative. By decoupling the reduction and oxidation steps, chemical looping approaches inherently minimize side reactions and enhance product selectivity. This review explores the critical material and economic considerations necessary for the development of robust, energy-efficient chemical looping technologies for dry reforming of methane. Metal oxide-supported catalysts, incorporating noble or transition metals, are the primary catalysts for chemical looping applications. Catalyst performance is governed not only by the intrinsic reactivity of active metals toward CH4 and CO2 activation but also by the redox behavior of oxide supports and the interfacial dynamics at the metal–support boundary. Key strategies for improving methane conversion efficiency and ensuring long-term catalyst durability include lowering C–H bond activation barriers, enhancing the oxygen storage capacity of supports, and engineering metal–support interactions to suppress coking and sintering. This article reviews the current challenges and opportunities in methane conversion technology and presents a comprehensive evaluation of catalysts comprising Ni, Fe, Co, and Pt dispersed on CeO2, ZrO2, Ce1-xZrxO2, Al2O3, SiO2, and TiO2 supports, with a parallel focus on economic feasibility and industrial scalability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信