超越Robeson上界的非线性学习增强mlp驱动的pim气体分离膜设计

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Aidi Wang, Min Zhao, Yunxuan Weng, Caili Zhang
{"title":"超越Robeson上界的非线性学习增强mlp驱动的pim气体分离膜设计","authors":"Aidi Wang,&nbsp;Min Zhao,&nbsp;Yunxuan Weng,&nbsp;Caili Zhang","doi":"10.1016/j.memsci.2025.124172","DOIUrl":null,"url":null,"abstract":"<div><div>This study pioneers the integration of multilayer perceptron (MLP) with interactive design for predicting gas separation performance in Polymers of Intrinsic Microporosity (PIMs), leveraging their rigid, contorted architectures to transcend Robeson upper bounds. A curated dataset of 389 PIMs/PIM-polyimides spanning six gases (He, H<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub>) enabled development of an MLP model achieving unprecedented accuracy (mean <em>R</em><sup>2</sup> = 0.969, <em>RMSE</em> = 0.156 Barrer), outperforming K-Nearest Neighbors regression (KNN), Gradient Boosting Decision Trees (GBDT), Random Forest (RF) and Gaussian Process Regression (GPR) models by ∼50 % error reduction. SHAP interpretability analysis decoded three fundamental design principles governing PIMs performance: backbone contortion, ladder connectivity, and hydrophobicity optimization, guiding creation of an interactive web platform that accelerates PIMs design through real-time permeability prediction. The platform demonstrates &lt;2 % prediction variance across experimental benchmarks, reducing development cycles from years to weeks while maintaining solution processability. By combining MLP's nonlinear mapping of microporosity-permeability relationships with actionable design feedback. The open-access tool's forthcoming multi-model ensembles and quantum-ML integration establish a new paradigm for data-driven membrane innovation, bridging computational discovery with industrial-scale gas separation challenges.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"730 ","pages":"Article 124172"},"PeriodicalIF":8.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear learning-enhanced MLP-driven design of PIMs gas separation membranes beyond Robeson upper bounds\",\"authors\":\"Aidi Wang,&nbsp;Min Zhao,&nbsp;Yunxuan Weng,&nbsp;Caili Zhang\",\"doi\":\"10.1016/j.memsci.2025.124172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study pioneers the integration of multilayer perceptron (MLP) with interactive design for predicting gas separation performance in Polymers of Intrinsic Microporosity (PIMs), leveraging their rigid, contorted architectures to transcend Robeson upper bounds. A curated dataset of 389 PIMs/PIM-polyimides spanning six gases (He, H<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub>) enabled development of an MLP model achieving unprecedented accuracy (mean <em>R</em><sup>2</sup> = 0.969, <em>RMSE</em> = 0.156 Barrer), outperforming K-Nearest Neighbors regression (KNN), Gradient Boosting Decision Trees (GBDT), Random Forest (RF) and Gaussian Process Regression (GPR) models by ∼50 % error reduction. SHAP interpretability analysis decoded three fundamental design principles governing PIMs performance: backbone contortion, ladder connectivity, and hydrophobicity optimization, guiding creation of an interactive web platform that accelerates PIMs design through real-time permeability prediction. The platform demonstrates &lt;2 % prediction variance across experimental benchmarks, reducing development cycles from years to weeks while maintaining solution processability. By combining MLP's nonlinear mapping of microporosity-permeability relationships with actionable design feedback. The open-access tool's forthcoming multi-model ensembles and quantum-ML integration establish a new paradigm for data-driven membrane innovation, bridging computational discovery with industrial-scale gas separation challenges.</div></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"730 \",\"pages\":\"Article 124172\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738825004855\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825004855","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究率先将多层感知器(MLP)与交互设计相结合,用于预测固有微孔聚合物(PIMs)的气体分离性能,利用其刚性、扭曲的结构超越罗伯逊上界。一个包含6种气体(He, H2, O2, N2, CO2, CH4)的389个pim / pim -聚酰亚胺的精选数据集使MLP模型的开发达到了前所未有的精度(平均R2 = 0.969, RMSE = 0.156 Barrer),优于k -近邻回归(KNN),梯度增强决策树(GBDT),随机森林(RF)和高斯过程回归(GPR)模型,误差减少了约50%。SHAP可解释性分析解码了控制PIMs性能的三个基本设计原则:主干扭曲、阶梯连通性和疏水性优化,指导创建一个交互式web平台,通过实时渗透率预测加速PIMs设计。该平台在实验基准测试中显示了2%的预测方差,在保持解决方案可处理性的同时,将开发周期从几年缩短到几周。通过将MLP的微孔渗透率关系非线性映射与可操作的设计反馈相结合。开放获取工具即将推出的多模型集成和量子机器学习集成为数据驱动的膜创新建立了一个新的范例,将计算发现与工业规模的气体分离挑战联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonlinear learning-enhanced MLP-driven design of PIMs gas separation membranes beyond Robeson upper bounds

Nonlinear learning-enhanced MLP-driven design of PIMs gas separation membranes beyond Robeson upper bounds
This study pioneers the integration of multilayer perceptron (MLP) with interactive design for predicting gas separation performance in Polymers of Intrinsic Microporosity (PIMs), leveraging their rigid, contorted architectures to transcend Robeson upper bounds. A curated dataset of 389 PIMs/PIM-polyimides spanning six gases (He, H2, O2, N2, CO2, CH4) enabled development of an MLP model achieving unprecedented accuracy (mean R2 = 0.969, RMSE = 0.156 Barrer), outperforming K-Nearest Neighbors regression (KNN), Gradient Boosting Decision Trees (GBDT), Random Forest (RF) and Gaussian Process Regression (GPR) models by ∼50 % error reduction. SHAP interpretability analysis decoded three fundamental design principles governing PIMs performance: backbone contortion, ladder connectivity, and hydrophobicity optimization, guiding creation of an interactive web platform that accelerates PIMs design through real-time permeability prediction. The platform demonstrates <2 % prediction variance across experimental benchmarks, reducing development cycles from years to weeks while maintaining solution processability. By combining MLP's nonlinear mapping of microporosity-permeability relationships with actionable design feedback. The open-access tool's forthcoming multi-model ensembles and quantum-ML integration establish a new paradigm for data-driven membrane innovation, bridging computational discovery with industrial-scale gas separation challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信