{"title":"具有消耗或线性信号产生的两物种趋化竞争系统经典解的全局存在性","authors":"Weiyi Zhang , Zuhan Liu","doi":"10.1016/j.jde.2025.113387","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the global existence of classical solutions for the following two-species chemotaxis system with Lotka-Volterra competitive kinetics on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span><span><span><span>(0.1)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>u</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>v</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>v</mi><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>v</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>u</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>+</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>v</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>w</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> in the following cases: (i) <span><math><mi>τ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mo>−</mo><mo>(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>)</mo><mi>w</mi></math></span>, (ii) <span><math><mi>τ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>u</mi><mo>+</mo><mi>β</mi><mi>v</mi><mo>−</mo><mi>λ</mi><mi>w</mi></math></span> and (iii) <span><math><mi>τ</mi><mo>=</mo><mn>0</mn></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>u</mi><mo>+</mo><mi>β</mi><mi>v</mi><mo>−</mo><mi>λ</mi><mi>w</mi></math></span>, where <span><math><mi>N</mi><mo>≥</mo><mn>1</mn></math></span> is a positive integer, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are nonzero numbers, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>λ</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi></math></span> are positive constants. We first prove that <span><span>(0.1)</span></span> has a unique nonnegative classical solution <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> on the maximal interval <span><math><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>)</mo></math></span>. Next, we prove that if there exists <span><math><mi>p</mi><mo>></mo><mi>max</mi><mo></mo><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>}</mo></math></span> such that<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>t</mi><mo>→</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>−</mo></mrow></munder><mspace></mspace><munder><mi>sup</mi><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo></mo><munder><mo>∫</mo><mrow><mi>B</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mn>1</mn><mo>)</mo></mrow></munder><msup><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo><</mo><mo>∞</mo><mo>,</mo></math></span></span></span> then <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>=</mo><mo>∞</mo></math></span> and <span><math><msub><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>(</mo><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mo>⋅</mo><mo>)</mo><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mi>v</mi><mo>(</mo><mi>t</mi><mo>,</mo><mo>⋅</mo><mo>)</mo><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo><mo><</mo><mo>∞</mo></math></span>. Finally, we provide sufficient conditions for the global existence and boundedness of classical solutions for three different models of <span><span>(0.1)</span></span>. It follows that nonnegative classical solution of the three different models of <span><span>(0.1)</span></span> exists globally and stays bounded in one- and two-dimensional settings for any chemotaxis sensitivity <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"439 ","pages":"Article 113387"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence of classical solutions of a two-species chemotaxis-competition system with consumption or linear signal production on RN\",\"authors\":\"Weiyi Zhang , Zuhan Liu\",\"doi\":\"10.1016/j.jde.2025.113387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the global existence of classical solutions for the following two-species chemotaxis system with Lotka-Volterra competitive kinetics on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span><span><span><span>(0.1)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>u</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>u</mi><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>v</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>v</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><msub><mrow><mi>χ</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>v</mi><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>v</mi><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>v</mi><mo>−</mo><msub><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>u</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>τ</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>w</mi><mo>+</mo><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>v</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mi>w</mi><mo>(</mo><mn>0</mn><mo>,</mo><mi>x</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo></mtd><mtd><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> in the following cases: (i) <span><math><mi>τ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mo>−</mo><mo>(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>)</mo><mi>w</mi></math></span>, (ii) <span><math><mi>τ</mi><mo>></mo><mn>0</mn></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>u</mi><mo>+</mo><mi>β</mi><mi>v</mi><mo>−</mo><mi>λ</mi><mi>w</mi></math></span> and (iii) <span><math><mi>τ</mi><mo>=</mo><mn>0</mn></math></span>, <span><math><mi>g</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>α</mi><mi>u</mi><mo>+</mo><mi>β</mi><mi>v</mi><mo>−</mo><mi>λ</mi><mi>w</mi></math></span>, where <span><math><mi>N</mi><mo>≥</mo><mn>1</mn></math></span> is a positive integer, <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> are nonzero numbers, <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> and <span><math><mi>λ</mi><mo>,</mo><mi>α</mi><mo>,</mo><mi>β</mi></math></span> are positive constants. We first prove that <span><span>(0.1)</span></span> has a unique nonnegative classical solution <span><math><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>,</mo><mi>w</mi><mo>)</mo></math></span> on the maximal interval <span><math><mo>(</mo><mn>0</mn><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>)</mo></math></span>. Next, we prove that if there exists <span><math><mi>p</mi><mo>></mo><mi>max</mi><mo></mo><mo>{</mo><mn>1</mn><mo>,</mo><mfrac><mrow><mi>N</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mo>}</mo></math></span> such that<span><span><span><math><munder><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>t</mi><mo>→</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>−</mo></mrow></munder><mspace></mspace><munder><mi>sup</mi><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></munder><mo></mo><munder><mo>∫</mo><mrow><mi>B</mi><mo>(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><mn>1</mn><mo>)</mo></mrow></munder><msup><mrow><mo>(</mo><mi>u</mi><mo>+</mo><mi>v</mi><mo>)</mo></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>t</mi><mo>,</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi><mo><</mo><mo>∞</mo><mo>,</mo></math></span></span></span> then <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>max</mi></mrow></msub><mo>=</mo><mo>∞</mo></math></span> and <span><math><msub><mrow><mrow><mi>lim</mi></mrow><mspace></mspace><mrow><mi>sup</mi></mrow></mrow><mrow><mi>t</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo>(</mo><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mo>⋅</mo><mo>)</mo><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>+</mo><msub><mrow><mo>‖</mo><mi>v</mi><mo>(</mo><mi>t</mi><mo>,</mo><mo>⋅</mo><mo>)</mo><mo>‖</mo></mrow><mrow><mo>∞</mo></mrow></msub><mo>)</mo><mo><</mo><mo>∞</mo></math></span>. Finally, we provide sufficient conditions for the global existence and boundedness of classical solutions for three different models of <span><span>(0.1)</span></span>. It follows that nonnegative classical solution of the three different models of <span><span>(0.1)</span></span> exists globally and stays bounded in one- and two-dimensional settings for any chemotaxis sensitivity <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow></msub><mspace></mspace><mo>(</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"439 \",\"pages\":\"Article 113387\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625004140\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625004140","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了具有Lotka-Volterra竞争动力学的两种趋化系统在RN(0.1){ut=Δu−χ1∇⋅(u∇w)+u(a1 - b1u - c1v),t>0,x∈RN, τwt=Δw+g(u,v,w),t>0,x∈RN,u(0,x)=u0(x),v(0,x)=v0(x),w(0,x)=w0(x),x∈RN上经典解的整体存在性:(我)τ的在0 g (u, v, w) =−(u + v) w, (ii)τ祝辞0 g (u, v, w) =αu +β−λw和(iii)τ= 0,g (u, v, w) =αu +β−λw,是一个正整数N≥1,χ我非零数字,ai, bi, ci (i = 1, 2)和λ,α,β是积极的常数。首先证明了(0.1)在最大区间(0,Tmax)上有唯一的非负经典解(u,v,w)。接下来,我们证明如果存在p>马克斯{1,N2}这样thatlimsupt→达峰时间−supx0∈RN∫B (x0, 1) (u + v) p (t, x) dx<∞,然后达峰时间=∞limsupt→∞(为u (t,⋅)为∞+为v (t)⋅)为∞)& lt;∞。最后,我们给出了(0.1)的三种不同模型经典解的整体存在性和有界性的充分条件。因此,对于任何趋化敏感性χi(i=1,2),(0.1)的三种不同模型的非负经典解存在全局并且在一维和二维设置中保持有界。
Global existence of classical solutions of a two-species chemotaxis-competition system with consumption or linear signal production on RN
In this paper, we investigate the global existence of classical solutions for the following two-species chemotaxis system with Lotka-Volterra competitive kinetics on (0.1) in the following cases: (i) , , (ii) , and (iii) , , where is a positive integer, are nonzero numbers, and are positive constants. We first prove that (0.1) has a unique nonnegative classical solution on the maximal interval . Next, we prove that if there exists such that then and . Finally, we provide sufficient conditions for the global existence and boundedness of classical solutions for three different models of (0.1). It follows that nonnegative classical solution of the three different models of (0.1) exists globally and stays bounded in one- and two-dimensional settings for any chemotaxis sensitivity .
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics