农杆菌介导的羊草遗传转化及CRISPR/ cas9基因编辑的建立

IF 4 3区 生物学 Q1 PLANT SCIENCES
Cheng Li , Xiaomei Peng , Zhengshe Zhang , Yaling Liu , García-Caparrós Pedro , Chunxiang Fu , Yongping Yang , Quanmin Dong , Yuanwen Duan , Xudong Sun
{"title":"农杆菌介导的羊草遗传转化及CRISPR/ cas9基因编辑的建立","authors":"Cheng Li ,&nbsp;Xiaomei Peng ,&nbsp;Zhengshe Zhang ,&nbsp;Yaling Liu ,&nbsp;García-Caparrós Pedro ,&nbsp;Chunxiang Fu ,&nbsp;Yongping Yang ,&nbsp;Quanmin Dong ,&nbsp;Yuanwen Duan ,&nbsp;Xudong Sun","doi":"10.1016/j.jplph.2025.154513","DOIUrl":null,"url":null,"abstract":"<div><div><em>Elymus nutans</em>, an allohexaploid (2n = 6x = 42) species with a StStHHYY genome, is a native perennial in the alpine grasslands of the Qinghai-Xizang Plateau, and has been widely used for artificial pasture and ecological restoration as a forage grass with highest yield on the plateau. Nevertheless, the lack of a stable transformation system has impeded further efforts to trait improvement of <em>E. nutans</em>. In the present study, we established a reliable <em>Agrobacterium</em>-mediated genetic transformation system for <em>E. nutans</em>, and successfully generated <em>EnTCP4</em>-edited plants using the CRISPR/Cas9 system. The editing efficiency achieved 19.23 % in <em>E. nutans</em>. Knocking out <em>EnTCP4</em> significantly delayed flowering and enhanced water-deficit stress resistance. This research represents a significant breakthrough in the genetic transformation and gene editing of <em>E. nutans</em>, laying a technological foundation to gain insight into gene functions and molecular breeding in <em>E. nutans</em>.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"310 ","pages":"Article 154513"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of Agrobacterium-mediated genetic transformation and CRISPR/Cas9-guided gene editing in Elymus nutans\",\"authors\":\"Cheng Li ,&nbsp;Xiaomei Peng ,&nbsp;Zhengshe Zhang ,&nbsp;Yaling Liu ,&nbsp;García-Caparrós Pedro ,&nbsp;Chunxiang Fu ,&nbsp;Yongping Yang ,&nbsp;Quanmin Dong ,&nbsp;Yuanwen Duan ,&nbsp;Xudong Sun\",\"doi\":\"10.1016/j.jplph.2025.154513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Elymus nutans</em>, an allohexaploid (2n = 6x = 42) species with a StStHHYY genome, is a native perennial in the alpine grasslands of the Qinghai-Xizang Plateau, and has been widely used for artificial pasture and ecological restoration as a forage grass with highest yield on the plateau. Nevertheless, the lack of a stable transformation system has impeded further efforts to trait improvement of <em>E. nutans</em>. In the present study, we established a reliable <em>Agrobacterium</em>-mediated genetic transformation system for <em>E. nutans</em>, and successfully generated <em>EnTCP4</em>-edited plants using the CRISPR/Cas9 system. The editing efficiency achieved 19.23 % in <em>E. nutans</em>. Knocking out <em>EnTCP4</em> significantly delayed flowering and enhanced water-deficit stress resistance. This research represents a significant breakthrough in the genetic transformation and gene editing of <em>E. nutans</em>, laying a technological foundation to gain insight into gene functions and molecular breeding in <em>E. nutans</em>.</div></div>\",\"PeriodicalId\":16808,\"journal\":{\"name\":\"Journal of plant physiology\",\"volume\":\"310 \",\"pages\":\"Article 154513\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of plant physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0176161725000951\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161725000951","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

羊草(Elymus nutans)是一种具有StStHHYY基因组的异源六倍体(2n = 6x = 42)物种,是青藏高原高寒草原的原生多年生牧草,是高原上产量最高的牧草,被广泛用于人工草地和生态恢复。然而,由于缺乏稳定的转化体系,制约了花生性状改良的进一步努力。在本研究中,我们建立了可靠的农杆菌介导的花生遗传转化系统,并利用CRISPR/Cas9系统成功生成了entcp4编辑的植株。在E. nutans中,编辑效率达到19.23%。敲除EnTCP4显著延迟开花时间,增强抗亏水胁迫能力。本研究在花生的遗传转化和基因编辑方面取得了重大突破,为深入了解花生的基因功能和分子育种奠定了技术基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Establishment of Agrobacterium-mediated genetic transformation and CRISPR/Cas9-guided gene editing in Elymus nutans
Elymus nutans, an allohexaploid (2n = 6x = 42) species with a StStHHYY genome, is a native perennial in the alpine grasslands of the Qinghai-Xizang Plateau, and has been widely used for artificial pasture and ecological restoration as a forage grass with highest yield on the plateau. Nevertheless, the lack of a stable transformation system has impeded further efforts to trait improvement of E. nutans. In the present study, we established a reliable Agrobacterium-mediated genetic transformation system for E. nutans, and successfully generated EnTCP4-edited plants using the CRISPR/Cas9 system. The editing efficiency achieved 19.23 % in E. nutans. Knocking out EnTCP4 significantly delayed flowering and enhanced water-deficit stress resistance. This research represents a significant breakthrough in the genetic transformation and gene editing of E. nutans, laying a technological foundation to gain insight into gene functions and molecular breeding in E. nutans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of plant physiology
Journal of plant physiology 生物-植物科学
CiteScore
7.20
自引率
4.70%
发文量
196
审稿时长
32 days
期刊介绍: The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication. The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信