Yangyang Li , Guocheng Du , Jian Chen , Xueqin Lv , Long Liu
{"title":"人乳低聚糖合成中的糖基转移酶:结构机制与合理设计","authors":"Yangyang Li , Guocheng Du , Jian Chen , Xueqin Lv , Long Liu","doi":"10.1016/j.copbio.2025.103315","DOIUrl":null,"url":null,"abstract":"<div><div>Human milk oligosaccharides (HMOs) play a pivotal role in infant health through their multifunctional bioactive properties. Recent advances in synthetic biology have revolutionized microbial platforms for HMO biosynthesis, with glycosyltransferases (GTs) emerging as indispensable biocatalytic tools that drive enzymatic lactose glycosylation to generate diversified oligosaccharides. This review systematically analyzes GT structural biology, elucidating conserved domains and catalytic mechanisms through crystallographic studies. We summarize contemporary optimization strategies for enhancing GT functionality, including solubility enhancement, catalytic efficiency improvement, and substrate specificity engineering via structure-guided rational design. Emerging deep learning algorithms demonstrate transformative potential in GT modifications and <em>de novo</em> design, providing innovative solutions to overcome bottlenecks in industrial-scale HMO synthesis. These approaches establish a framework for the precision engineering of carbohydrate-active enzymes.</div></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"93 ","pages":"Article 103315"},"PeriodicalIF":7.1000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glycosyltransferases in human milk oligosaccharide synthesis: structural mechanisms and rational design\",\"authors\":\"Yangyang Li , Guocheng Du , Jian Chen , Xueqin Lv , Long Liu\",\"doi\":\"10.1016/j.copbio.2025.103315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Human milk oligosaccharides (HMOs) play a pivotal role in infant health through their multifunctional bioactive properties. Recent advances in synthetic biology have revolutionized microbial platforms for HMO biosynthesis, with glycosyltransferases (GTs) emerging as indispensable biocatalytic tools that drive enzymatic lactose glycosylation to generate diversified oligosaccharides. This review systematically analyzes GT structural biology, elucidating conserved domains and catalytic mechanisms through crystallographic studies. We summarize contemporary optimization strategies for enhancing GT functionality, including solubility enhancement, catalytic efficiency improvement, and substrate specificity engineering via structure-guided rational design. Emerging deep learning algorithms demonstrate transformative potential in GT modifications and <em>de novo</em> design, providing innovative solutions to overcome bottlenecks in industrial-scale HMO synthesis. These approaches establish a framework for the precision engineering of carbohydrate-active enzymes.</div></div>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":\"93 \",\"pages\":\"Article 103315\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095816692500059X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095816692500059X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Glycosyltransferases in human milk oligosaccharide synthesis: structural mechanisms and rational design
Human milk oligosaccharides (HMOs) play a pivotal role in infant health through their multifunctional bioactive properties. Recent advances in synthetic biology have revolutionized microbial platforms for HMO biosynthesis, with glycosyltransferases (GTs) emerging as indispensable biocatalytic tools that drive enzymatic lactose glycosylation to generate diversified oligosaccharides. This review systematically analyzes GT structural biology, elucidating conserved domains and catalytic mechanisms through crystallographic studies. We summarize contemporary optimization strategies for enhancing GT functionality, including solubility enhancement, catalytic efficiency improvement, and substrate specificity engineering via structure-guided rational design. Emerging deep learning algorithms demonstrate transformative potential in GT modifications and de novo design, providing innovative solutions to overcome bottlenecks in industrial-scale HMO synthesis. These approaches establish a framework for the precision engineering of carbohydrate-active enzymes.
期刊介绍:
Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time.
As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows.
COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.