Tristan Bice , Lisa Orloff Clark , Ying-Fen Lin , Kathryn McCormick
{"title":"Cartan半群与扭曲群C*-代数","authors":"Tristan Bice , Lisa Orloff Clark , Ying-Fen Lin , Kathryn McCormick","doi":"10.1016/j.jfa.2025.111038","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that twisted groupoid C*-algebras are characterised, up to isomorphism, by having <em>Cartan semigroups</em>, a natural generalisation of normaliser semigroups of Cartan subalgebras. This extends the classic Kumjian-Renault theory to general twisted étale groupoid C*-algebras, even non-reduced C*-algebras of non-effective groupoids.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 7","pages":"Article 111038"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cartan semigroups and twisted groupoid C*-algebras\",\"authors\":\"Tristan Bice , Lisa Orloff Clark , Ying-Fen Lin , Kathryn McCormick\",\"doi\":\"10.1016/j.jfa.2025.111038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that twisted groupoid C*-algebras are characterised, up to isomorphism, by having <em>Cartan semigroups</em>, a natural generalisation of normaliser semigroups of Cartan subalgebras. This extends the classic Kumjian-Renault theory to general twisted étale groupoid C*-algebras, even non-reduced C*-algebras of non-effective groupoids.</div></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"289 7\",\"pages\":\"Article 111038\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123625002204\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625002204","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Cartan semigroups and twisted groupoid C*-algebras
We prove that twisted groupoid C*-algebras are characterised, up to isomorphism, by having Cartan semigroups, a natural generalisation of normaliser semigroups of Cartan subalgebras. This extends the classic Kumjian-Renault theory to general twisted étale groupoid C*-algebras, even non-reduced C*-algebras of non-effective groupoids.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis