{"title":"基于FinFET的单位线反馈切割低功耗11T SRAM单元,用于LPWAN应用","authors":"Anandita Srivastav , Usha Tiwari , Sushanta K. Mandal , Ashish Sachdeva","doi":"10.1016/j.aeue.2025.155821","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents the design of an advanced SRAM bit-cell optimized for LPWAN applications, leveraging FinFET 18 nm technology. The proposed FCLP11T cell is compared with Conventional 6T (CO6T), Transmission gate-based feedback-cutting 9T (TGFC9T), Transmission gate-based read buffers 10T (TGRB10T), Dual PMOS-based read decoupled 10T (DPRD10T), and Dual Stack 10T (DS10T). It demonstrates significant reductions in read and write power dissipation by factors of 1.02<span><math><mo>×</mo></math></span>/1.91<span><math><mo>×</mo></math></span>/1.75<span><math><mo>×</mo></math></span>/1<span><math><mo>×</mo></math></span>/1.97<span><math><mo>×</mo></math></span> and 1.54<span><math><mo>×</mo></math></span>/1.90<span><math><mo>×</mo></math></span>/1.09<span><math><mo>×</mo></math></span>/2.29<span><math><mo>×</mo></math></span>/1.10<span><math><mo>×</mo></math></span>, respectively, compared to CO6T/TGRB10T/TGFC9T/DS10T/DPRD10T SRAM bit-cell design. Additionally, the FCLP11T cell reduces leakage power by 1.29<span><math><mo>×</mo></math></span>/1.15<span><math><mo>×</mo></math></span>/1.30<span><math><mo>×</mo></math></span>/1.17<span><math><mo>×</mo></math></span>/ 1.12<span><math><mo>×</mo></math></span> and improves WSNM by 1.39<span><math><mo>×</mo></math></span>/1.55<span><math><mo>×</mo></math></span>/0.99<span><math><mo>×</mo></math></span>/1.38<span><math><mo>×</mo></math></span>/1.31<span><math><mo>×</mo></math></span>, respectively, compared to CO6T/TGRB10T /TGFC9T/DS10T /DPRD10T SRAM bit-cell design. The RSNM and HSNM are also enhanced by 2.12<span><math><mo>×</mo></math></span>/ 1.44<span><math><mo>×</mo></math></span>/ 1.55<span><math><mo>×</mo></math></span>/1.73<span><math><mo>×</mo></math></span>/1.01<span><math><mo>×</mo></math></span> and 1.03<span><math><mo>×</mo></math></span>/1.02<span><math><mo>×</mo></math></span>/1.03<span><math><mo>×</mo></math></span>/1.02<span><math><mo>×</mo></math></span>/ 1.01<span><math><mo>×</mo></math></span>, respectively, compared to CO6T/TGRB10T /TGFC9T/DS10T/DPRD10T SRAM bit-cell design. . The proposed cell has been tested for Process-Voltage-Temperature variations, highlighting its robust performance and suitability for LPWAN applications.</div></div>","PeriodicalId":50844,"journal":{"name":"Aeu-International Journal of Electronics and Communications","volume":"197 ","pages":"Article 155821"},"PeriodicalIF":3.0000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A FinFET based single bit-line feedback cutting Low Power 11T SRAM cell for LPWAN applications\",\"authors\":\"Anandita Srivastav , Usha Tiwari , Sushanta K. Mandal , Ashish Sachdeva\",\"doi\":\"10.1016/j.aeue.2025.155821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents the design of an advanced SRAM bit-cell optimized for LPWAN applications, leveraging FinFET 18 nm technology. The proposed FCLP11T cell is compared with Conventional 6T (CO6T), Transmission gate-based feedback-cutting 9T (TGFC9T), Transmission gate-based read buffers 10T (TGRB10T), Dual PMOS-based read decoupled 10T (DPRD10T), and Dual Stack 10T (DS10T). It demonstrates significant reductions in read and write power dissipation by factors of 1.02<span><math><mo>×</mo></math></span>/1.91<span><math><mo>×</mo></math></span>/1.75<span><math><mo>×</mo></math></span>/1<span><math><mo>×</mo></math></span>/1.97<span><math><mo>×</mo></math></span> and 1.54<span><math><mo>×</mo></math></span>/1.90<span><math><mo>×</mo></math></span>/1.09<span><math><mo>×</mo></math></span>/2.29<span><math><mo>×</mo></math></span>/1.10<span><math><mo>×</mo></math></span>, respectively, compared to CO6T/TGRB10T/TGFC9T/DS10T/DPRD10T SRAM bit-cell design. Additionally, the FCLP11T cell reduces leakage power by 1.29<span><math><mo>×</mo></math></span>/1.15<span><math><mo>×</mo></math></span>/1.30<span><math><mo>×</mo></math></span>/1.17<span><math><mo>×</mo></math></span>/ 1.12<span><math><mo>×</mo></math></span> and improves WSNM by 1.39<span><math><mo>×</mo></math></span>/1.55<span><math><mo>×</mo></math></span>/0.99<span><math><mo>×</mo></math></span>/1.38<span><math><mo>×</mo></math></span>/1.31<span><math><mo>×</mo></math></span>, respectively, compared to CO6T/TGRB10T /TGFC9T/DS10T /DPRD10T SRAM bit-cell design. The RSNM and HSNM are also enhanced by 2.12<span><math><mo>×</mo></math></span>/ 1.44<span><math><mo>×</mo></math></span>/ 1.55<span><math><mo>×</mo></math></span>/1.73<span><math><mo>×</mo></math></span>/1.01<span><math><mo>×</mo></math></span> and 1.03<span><math><mo>×</mo></math></span>/1.02<span><math><mo>×</mo></math></span>/1.03<span><math><mo>×</mo></math></span>/1.02<span><math><mo>×</mo></math></span>/ 1.01<span><math><mo>×</mo></math></span>, respectively, compared to CO6T/TGRB10T /TGFC9T/DS10T/DPRD10T SRAM bit-cell design. . The proposed cell has been tested for Process-Voltage-Temperature variations, highlighting its robust performance and suitability for LPWAN applications.</div></div>\",\"PeriodicalId\":50844,\"journal\":{\"name\":\"Aeu-International Journal of Electronics and Communications\",\"volume\":\"197 \",\"pages\":\"Article 155821\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aeu-International Journal of Electronics and Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1434841125001621\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aeu-International Journal of Electronics and Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1434841125001621","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A FinFET based single bit-line feedback cutting Low Power 11T SRAM cell for LPWAN applications
This work presents the design of an advanced SRAM bit-cell optimized for LPWAN applications, leveraging FinFET 18 nm technology. The proposed FCLP11T cell is compared with Conventional 6T (CO6T), Transmission gate-based feedback-cutting 9T (TGFC9T), Transmission gate-based read buffers 10T (TGRB10T), Dual PMOS-based read decoupled 10T (DPRD10T), and Dual Stack 10T (DS10T). It demonstrates significant reductions in read and write power dissipation by factors of 1.02/1.91/1.75/1/1.97 and 1.54/1.90/1.09/2.29/1.10, respectively, compared to CO6T/TGRB10T/TGFC9T/DS10T/DPRD10T SRAM bit-cell design. Additionally, the FCLP11T cell reduces leakage power by 1.29/1.15/1.30/1.17/ 1.12 and improves WSNM by 1.39/1.55/0.99/1.38/1.31, respectively, compared to CO6T/TGRB10T /TGFC9T/DS10T /DPRD10T SRAM bit-cell design. The RSNM and HSNM are also enhanced by 2.12/ 1.44/ 1.55/1.73/1.01 and 1.03/1.02/1.03/1.02/ 1.01, respectively, compared to CO6T/TGRB10T /TGFC9T/DS10T/DPRD10T SRAM bit-cell design. . The proposed cell has been tested for Process-Voltage-Temperature variations, highlighting its robust performance and suitability for LPWAN applications.
期刊介绍:
AEÜ is an international scientific journal which publishes both original works and invited tutorials. The journal''s scope covers all aspects of theory and design of circuits, systems and devices for electronics, signal processing, and communication, including:
signal and system theory, digital signal processing
network theory and circuit design
information theory, communication theory and techniques, modulation, source and channel coding
switching theory and techniques, communication protocols
optical communications
microwave theory and techniques, radar, sonar
antennas, wave propagation
AEÜ publishes full papers and letters with very short turn around time but a high standard review process. Review cycles are typically finished within twelve weeks by application of modern electronic communication facilities.