{"title":"将细胞水平的现象与大脑结构联系起来:以尖峰小脑控制器为例","authors":"Egidio D’Angelo , Alberto Antonietti , Alice Geminiani , Benedetta Gambosi , Cristiano Alessandro , Emiliano Buttarazzi , Alessandra Pedrocchi , Claudia Casellato","doi":"10.1016/j.neunet.2025.107538","DOIUrl":null,"url":null,"abstract":"<div><div>Linking cellular-level phenomena to brain architecture and behavior is a holy grail for theoretical and computational neuroscience. Advances in neuroinformatics have recently allowed scientists to embed spiking neural networks of the cerebellum with realistic neuron models and multiple synaptic plasticity rules into sensorimotor controllers. By minimizing the distance (error) between the desired and the actual sensory state, and exploiting the sensory prediction, the cerebellar network acquires knowledge about the body-environment interaction and generates corrective signals. In doing so, the cerebellum implements a generalized computational algorithm, allowing it \"<em>to learn to predict the timing between correlated events</em>\" in a rich set of behavioral contexts. Plastic changes evolve trial by trial and are distributed over multiple synapses, regulating the timing of neuronal discharge and fine-tuning high-speed movements on the millisecond timescale. Thus, spiking cerebellar built-in controllers, among various computational approaches to studying cerebellar function, are helping to reveal the cellular-level substrates of network learning and signal coding, opening new frontiers for predictive computing and autonomous learning in robots.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"188 ","pages":"Article 107538"},"PeriodicalIF":6.0000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linking cellular-level phenomena to brain architecture: the case of spiking cerebellar controllers\",\"authors\":\"Egidio D’Angelo , Alberto Antonietti , Alice Geminiani , Benedetta Gambosi , Cristiano Alessandro , Emiliano Buttarazzi , Alessandra Pedrocchi , Claudia Casellato\",\"doi\":\"10.1016/j.neunet.2025.107538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Linking cellular-level phenomena to brain architecture and behavior is a holy grail for theoretical and computational neuroscience. Advances in neuroinformatics have recently allowed scientists to embed spiking neural networks of the cerebellum with realistic neuron models and multiple synaptic plasticity rules into sensorimotor controllers. By minimizing the distance (error) between the desired and the actual sensory state, and exploiting the sensory prediction, the cerebellar network acquires knowledge about the body-environment interaction and generates corrective signals. In doing so, the cerebellum implements a generalized computational algorithm, allowing it \\\"<em>to learn to predict the timing between correlated events</em>\\\" in a rich set of behavioral contexts. Plastic changes evolve trial by trial and are distributed over multiple synapses, regulating the timing of neuronal discharge and fine-tuning high-speed movements on the millisecond timescale. Thus, spiking cerebellar built-in controllers, among various computational approaches to studying cerebellar function, are helping to reveal the cellular-level substrates of network learning and signal coding, opening new frontiers for predictive computing and autonomous learning in robots.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"188 \",\"pages\":\"Article 107538\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608025004174\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025004174","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Linking cellular-level phenomena to brain architecture: the case of spiking cerebellar controllers
Linking cellular-level phenomena to brain architecture and behavior is a holy grail for theoretical and computational neuroscience. Advances in neuroinformatics have recently allowed scientists to embed spiking neural networks of the cerebellum with realistic neuron models and multiple synaptic plasticity rules into sensorimotor controllers. By minimizing the distance (error) between the desired and the actual sensory state, and exploiting the sensory prediction, the cerebellar network acquires knowledge about the body-environment interaction and generates corrective signals. In doing so, the cerebellum implements a generalized computational algorithm, allowing it "to learn to predict the timing between correlated events" in a rich set of behavioral contexts. Plastic changes evolve trial by trial and are distributed over multiple synapses, regulating the timing of neuronal discharge and fine-tuning high-speed movements on the millisecond timescale. Thus, spiking cerebellar built-in controllers, among various computational approaches to studying cerebellar function, are helping to reveal the cellular-level substrates of network learning and signal coding, opening new frontiers for predictive computing and autonomous learning in robots.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.