将帕累托最优前沿提炼成可操作的见解

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Sydney E. White , Felix Witing , Cordula I.H. Wittekind , Martin Volk , Michael Strauch
{"title":"将帕累托最优前沿提炼成可操作的见解","authors":"Sydney E. White ,&nbsp;Felix Witing ,&nbsp;Cordula I.H. Wittekind ,&nbsp;Martin Volk ,&nbsp;Michael Strauch","doi":"10.1016/j.envsoft.2025.106508","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-objective optimization (MOO) is becoming increasingly important in environmental decision making, but interpreting highly-dimensional Pareto optimal data often constitutes a cognitive overload for both scientists and stakeholders. To address this challenge, we present PyretoClustR, a modular framework for post-processing Pareto optimal solutions. This tool aims to increase accessibility and applicability of MOO results by introducing a low-lift, iterative method to reduce the Pareto front. PyretoClustR is adaptable to various environmental datasets and decision-making scenarios, automatically selecting effective parameters for principal component analysis, clustering, and outlier handling. It produces digestible visualizations of the pruned dataset for decision-makers. We demonstrate its effectiveness using MOO results from a multifunctional landscape, highlighting trade-offs between agricultural productivity, biodiversity, water quality, and ecological flow. PyretoClustR successfully reduced the Pareto front (2419 points) to 18 representative solutions with a silhouette score of 0.33 based on decision space variables, facilitating understanding of MOO for informed decision making.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"191 ","pages":"Article 106508"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distilling the Pareto optimal front into actionable insights\",\"authors\":\"Sydney E. White ,&nbsp;Felix Witing ,&nbsp;Cordula I.H. Wittekind ,&nbsp;Martin Volk ,&nbsp;Michael Strauch\",\"doi\":\"10.1016/j.envsoft.2025.106508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-objective optimization (MOO) is becoming increasingly important in environmental decision making, but interpreting highly-dimensional Pareto optimal data often constitutes a cognitive overload for both scientists and stakeholders. To address this challenge, we present PyretoClustR, a modular framework for post-processing Pareto optimal solutions. This tool aims to increase accessibility and applicability of MOO results by introducing a low-lift, iterative method to reduce the Pareto front. PyretoClustR is adaptable to various environmental datasets and decision-making scenarios, automatically selecting effective parameters for principal component analysis, clustering, and outlier handling. It produces digestible visualizations of the pruned dataset for decision-makers. We demonstrate its effectiveness using MOO results from a multifunctional landscape, highlighting trade-offs between agricultural productivity, biodiversity, water quality, and ecological flow. PyretoClustR successfully reduced the Pareto front (2419 points) to 18 representative solutions with a silhouette score of 0.33 based on decision space variables, facilitating understanding of MOO for informed decision making.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"191 \",\"pages\":\"Article 106508\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225001926\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225001926","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

多目标优化(MOO)在环境决策中变得越来越重要,但对于科学家和利益相关者来说,解释高维帕累托最优数据往往构成认知过载。为了应对这一挑战,我们提出了PyretoClustR,这是一个用于后处理帕累托最优解的模块化框架。该工具旨在通过引入低升程迭代方法来减少Pareto锋,从而提高MOO结果的可访问性和适用性。PyretoClustR适用于各种环境数据集和决策场景,自动选择有效参数进行主成分分析,聚类和异常值处理。它为决策者生成易于理解的修剪数据集的可视化。我们利用多功能景观的MOO结果证明了其有效性,突出了农业生产力、生物多样性、水质和生态流量之间的权衡。PyretoClustR基于决策空间变量成功地将Pareto前沿(2419个点)简化为18个具有代表性的解决方案,剪影得分为0.33,有助于理解MOO以进行明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Distilling the Pareto optimal front into actionable insights

Distilling the Pareto optimal front into actionable insights
Multi-objective optimization (MOO) is becoming increasingly important in environmental decision making, but interpreting highly-dimensional Pareto optimal data often constitutes a cognitive overload for both scientists and stakeholders. To address this challenge, we present PyretoClustR, a modular framework for post-processing Pareto optimal solutions. This tool aims to increase accessibility and applicability of MOO results by introducing a low-lift, iterative method to reduce the Pareto front. PyretoClustR is adaptable to various environmental datasets and decision-making scenarios, automatically selecting effective parameters for principal component analysis, clustering, and outlier handling. It produces digestible visualizations of the pruned dataset for decision-makers. We demonstrate its effectiveness using MOO results from a multifunctional landscape, highlighting trade-offs between agricultural productivity, biodiversity, water quality, and ecological flow. PyretoClustR successfully reduced the Pareto front (2419 points) to 18 representative solutions with a silhouette score of 0.33 based on decision space variables, facilitating understanding of MOO for informed decision making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信