{"title":"钆掺杂对β−Ga2O3结构、形貌、振动和光学性质的影响:固态燃烧方法","authors":"Abhishek Sharma, Vir Singh Rangra","doi":"10.1016/j.ceramint.2025.01.532","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the synthesis and comprehensive characterization of gadolinium (Gd)-doped <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> nanoparticles, prepared for the first time via the solid-state combustion method, with Gd doping concentrations of 1%, 2%, and 3%. To date, no prior studies have reported the successful synthesis of Gd-doped <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> using this method. X-ray diffraction (XRD) analysis confirmed the retention of the monoclinic crystal structure, with <span><math><msup><mrow><mi>Gd</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ion incorporation leading to peak broadening, reduced intensity, and shifts to higher <span><math><mrow><mn>2</mn><mi>θ</mi></mrow></math></span> angles. These changes, validated through Scherrer and Williamson–Hall analyses, are attributed to lattice strain, reduced crystallite size, and structural distortion induced by substituting smaller <span><math><msup><mrow><mi>Ga</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ions (<span><math><mrow><mn>0</mn><mo>.</mo><mn>62</mn><mspace></mspace><mtext>Å</mtext></mrow></math></span>) with larger <span><math><msup><mrow><mi>Gd</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ions (<span><math><mrow><mn>0</mn><mo>.</mo><mn>93</mn><mspace></mspace><mtext>Å</mtext></mrow></math></span>). Morphological analysis using field emission scanning electron microscopy (FESEM) revealed polydispersed nanoparticles with irregular shapes and a decrease in particle size with increasing Gd concentration. Energy-dispersive spectroscopy (EDS) confirmed the stoichiometric incorporation of Gd ions into the <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> lattice. Raman and Fourier-transform infrared (FTIR) spectroscopy showed reduced intensities, peak broadening, and shifts to higher wavenumbers, indicating increased lattice distortion and strain. UV–Vis spectroscopy demonstrated a reduction in the optical bandgap from 4.6 eV for pure <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> to 4.11 eV for 1% Gd doping, with minor increases to 4.16 eV and 4.18 eV at 2% and 3% doping, respectively. This narrowing of the bandgap is attributed to the introduction of defect states within the bandgap, facilitating electronic transitions at lower energies. Photoluminescence (PL) spectra revealed broad emission bands in the 400-600 nm range, with deconvolution identifying prominent peaks in the blue and green regions, corresponding to radiative recombination involving defect states such as oxygen vacancies <span><math><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>)</mo></mrow></math></span> and gallium vacancies <span><math><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>G</mi><mi>a</mi></mrow></msub><mo>)</mo></mrow></math></span>. This work highlights the influence of Gd doping on the structural and optical properties of <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and establishes its potential for ultraviolet photodetectors, luminescent devices, and other optoelectronic applications.</div></div>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":"51 13","pages":"Pages 17583-17592"},"PeriodicalIF":5.1000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of gadolinium doping on the structural, morphological, vibrational, and optical properties of β−Ga2O3: A solid-state combustion approach\",\"authors\":\"Abhishek Sharma, Vir Singh Rangra\",\"doi\":\"10.1016/j.ceramint.2025.01.532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the synthesis and comprehensive characterization of gadolinium (Gd)-doped <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> nanoparticles, prepared for the first time via the solid-state combustion method, with Gd doping concentrations of 1%, 2%, and 3%. To date, no prior studies have reported the successful synthesis of Gd-doped <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> using this method. X-ray diffraction (XRD) analysis confirmed the retention of the monoclinic crystal structure, with <span><math><msup><mrow><mi>Gd</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ion incorporation leading to peak broadening, reduced intensity, and shifts to higher <span><math><mrow><mn>2</mn><mi>θ</mi></mrow></math></span> angles. These changes, validated through Scherrer and Williamson–Hall analyses, are attributed to lattice strain, reduced crystallite size, and structural distortion induced by substituting smaller <span><math><msup><mrow><mi>Ga</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ions (<span><math><mrow><mn>0</mn><mo>.</mo><mn>62</mn><mspace></mspace><mtext>Å</mtext></mrow></math></span>) with larger <span><math><msup><mrow><mi>Gd</mi></mrow><mrow><mn>3</mn><mo>+</mo></mrow></msup></math></span> ions (<span><math><mrow><mn>0</mn><mo>.</mo><mn>93</mn><mspace></mspace><mtext>Å</mtext></mrow></math></span>). Morphological analysis using field emission scanning electron microscopy (FESEM) revealed polydispersed nanoparticles with irregular shapes and a decrease in particle size with increasing Gd concentration. Energy-dispersive spectroscopy (EDS) confirmed the stoichiometric incorporation of Gd ions into the <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> lattice. Raman and Fourier-transform infrared (FTIR) spectroscopy showed reduced intensities, peak broadening, and shifts to higher wavenumbers, indicating increased lattice distortion and strain. UV–Vis spectroscopy demonstrated a reduction in the optical bandgap from 4.6 eV for pure <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> to 4.11 eV for 1% Gd doping, with minor increases to 4.16 eV and 4.18 eV at 2% and 3% doping, respectively. This narrowing of the bandgap is attributed to the introduction of defect states within the bandgap, facilitating electronic transitions at lower energies. Photoluminescence (PL) spectra revealed broad emission bands in the 400-600 nm range, with deconvolution identifying prominent peaks in the blue and green regions, corresponding to radiative recombination involving defect states such as oxygen vacancies <span><math><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>o</mi></mrow></msub><mo>)</mo></mrow></math></span> and gallium vacancies <span><math><mrow><mo>(</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>G</mi><mi>a</mi></mrow></msub><mo>)</mo></mrow></math></span>. This work highlights the influence of Gd doping on the structural and optical properties of <span><math><mrow><mi>β</mi><mo>−</mo><msub><mrow><mi>Ga</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and establishes its potential for ultraviolet photodetectors, luminescent devices, and other optoelectronic applications.</div></div>\",\"PeriodicalId\":267,\"journal\":{\"name\":\"Ceramics International\",\"volume\":\"51 13\",\"pages\":\"Pages 17583-17592\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ceramics International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0272884225005905\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0272884225005905","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Effect of gadolinium doping on the structural, morphological, vibrational, and optical properties of β−Ga2O3: A solid-state combustion approach
This study explores the synthesis and comprehensive characterization of gadolinium (Gd)-doped nanoparticles, prepared for the first time via the solid-state combustion method, with Gd doping concentrations of 1%, 2%, and 3%. To date, no prior studies have reported the successful synthesis of Gd-doped using this method. X-ray diffraction (XRD) analysis confirmed the retention of the monoclinic crystal structure, with ion incorporation leading to peak broadening, reduced intensity, and shifts to higher angles. These changes, validated through Scherrer and Williamson–Hall analyses, are attributed to lattice strain, reduced crystallite size, and structural distortion induced by substituting smaller ions () with larger ions (). Morphological analysis using field emission scanning electron microscopy (FESEM) revealed polydispersed nanoparticles with irregular shapes and a decrease in particle size with increasing Gd concentration. Energy-dispersive spectroscopy (EDS) confirmed the stoichiometric incorporation of Gd ions into the lattice. Raman and Fourier-transform infrared (FTIR) spectroscopy showed reduced intensities, peak broadening, and shifts to higher wavenumbers, indicating increased lattice distortion and strain. UV–Vis spectroscopy demonstrated a reduction in the optical bandgap from 4.6 eV for pure to 4.11 eV for 1% Gd doping, with minor increases to 4.16 eV and 4.18 eV at 2% and 3% doping, respectively. This narrowing of the bandgap is attributed to the introduction of defect states within the bandgap, facilitating electronic transitions at lower energies. Photoluminescence (PL) spectra revealed broad emission bands in the 400-600 nm range, with deconvolution identifying prominent peaks in the blue and green regions, corresponding to radiative recombination involving defect states such as oxygen vacancies and gallium vacancies . This work highlights the influence of Gd doping on the structural and optical properties of and establishes its potential for ultraviolet photodetectors, luminescent devices, and other optoelectronic applications.
期刊介绍:
Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties.
Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour.
Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.