Olivia L. Martin , Courtney R.H. Lynch , Rachel Fleming
{"title":"推进法医体液鉴定:RT-LAMP+CRISPR-Cas12a与已建立的基于mrna的方法的比较分析","authors":"Olivia L. Martin , Courtney R.H. Lynch , Rachel Fleming","doi":"10.1016/j.fsigen.2025.103297","DOIUrl":null,"url":null,"abstract":"<div><div>In forensic science, the analysis of body fluid evidence determines the cellular origin of a sample, aiding in the reconstruction of a potential crime. Messenger ribonucleic acid (mRNA) based confirmatory tests address limitations of current conventional methods, providing increased specificity and sensitivity, minimal sample consumption, and the detection of a broader range of body fluids. However, they require expensive instrumentation, longer reaction times, and lack portability. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) coupled with clustered regular interspaced short palindromic repeats (CRISPR) with CRISPR-associated protein 12a (Cas12a) has the potential to overcome these challenges. This approach offers reduced testing time and cost, while potentially providing equivalent sensitivity and specificity, as observed in the field of viral diagnostics. Visual detection capabilities enable the development of rapid, portable screening tests suitable for testing at the crime scene. In the context of a sexual assault investigation, RT-LAMP+CRISPR-Cas12a could potentially increase the efficiency and detection rate. This study compares this novel method to two other mRNA-based methods, endpoint reverse transcription polymerase chain reaction (RT-PCR) multiplex assay CellTyper 2, and a real-time reverse transcription quantitative PCR (RT-qPCR) multiplex assay. The tests’ sensitivity and specificity were evaluated on single-source and mixed body fluid samples, including rectal mucosa, a fluid which is minimally explored in forensic literature. The RT-qPCR assay demonstrated the highest sensitivity, specificity, and precision in mixed samples. In addition, RT-qPCR offers a greater linear dynamic range, faster processing time and easier methodology compared to CellTyper 2, only limited by its expensive nature. Notably, rectal mucosa samples exhibited non-specific marker expression of CellTyper 2 markers and expression of <em>CYP2B7P</em> (vaginal fluid) for all methods. This emphasises the need for a dedicated rectal mucosa marker. RT-LAMP+CRISPR-Cas12a exhibited a high specificity, displaying off-target expression of <em>CYP2B7P</em> in two fluid types. However, the method lacked sensitivity and precision for most markers except <em>MMP3</em> (menstrual blood), demonstrating detection down to 1:10,000 with 100 % specificity. RT-LAMP+CRISPR requires further development, but its quick, inexpensive nature and high specificity suggest it has potential as a confirmatory test that could reduce the limitations of existing methods.</div></div>","PeriodicalId":50435,"journal":{"name":"Forensic Science International-Genetics","volume":"78 ","pages":"Article 103297"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing forensic body fluid identification: A comparative analysis of RT-LAMP+CRISPR-Cas12a and established mRNA-based methods\",\"authors\":\"Olivia L. Martin , Courtney R.H. Lynch , Rachel Fleming\",\"doi\":\"10.1016/j.fsigen.2025.103297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In forensic science, the analysis of body fluid evidence determines the cellular origin of a sample, aiding in the reconstruction of a potential crime. Messenger ribonucleic acid (mRNA) based confirmatory tests address limitations of current conventional methods, providing increased specificity and sensitivity, minimal sample consumption, and the detection of a broader range of body fluids. However, they require expensive instrumentation, longer reaction times, and lack portability. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) coupled with clustered regular interspaced short palindromic repeats (CRISPR) with CRISPR-associated protein 12a (Cas12a) has the potential to overcome these challenges. This approach offers reduced testing time and cost, while potentially providing equivalent sensitivity and specificity, as observed in the field of viral diagnostics. Visual detection capabilities enable the development of rapid, portable screening tests suitable for testing at the crime scene. In the context of a sexual assault investigation, RT-LAMP+CRISPR-Cas12a could potentially increase the efficiency and detection rate. This study compares this novel method to two other mRNA-based methods, endpoint reverse transcription polymerase chain reaction (RT-PCR) multiplex assay CellTyper 2, and a real-time reverse transcription quantitative PCR (RT-qPCR) multiplex assay. The tests’ sensitivity and specificity were evaluated on single-source and mixed body fluid samples, including rectal mucosa, a fluid which is minimally explored in forensic literature. The RT-qPCR assay demonstrated the highest sensitivity, specificity, and precision in mixed samples. In addition, RT-qPCR offers a greater linear dynamic range, faster processing time and easier methodology compared to CellTyper 2, only limited by its expensive nature. Notably, rectal mucosa samples exhibited non-specific marker expression of CellTyper 2 markers and expression of <em>CYP2B7P</em> (vaginal fluid) for all methods. This emphasises the need for a dedicated rectal mucosa marker. RT-LAMP+CRISPR-Cas12a exhibited a high specificity, displaying off-target expression of <em>CYP2B7P</em> in two fluid types. However, the method lacked sensitivity and precision for most markers except <em>MMP3</em> (menstrual blood), demonstrating detection down to 1:10,000 with 100 % specificity. RT-LAMP+CRISPR requires further development, but its quick, inexpensive nature and high specificity suggest it has potential as a confirmatory test that could reduce the limitations of existing methods.</div></div>\",\"PeriodicalId\":50435,\"journal\":{\"name\":\"Forensic Science International-Genetics\",\"volume\":\"78 \",\"pages\":\"Article 103297\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forensic Science International-Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872497325000778\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Genetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872497325000778","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Advancing forensic body fluid identification: A comparative analysis of RT-LAMP+CRISPR-Cas12a and established mRNA-based methods
In forensic science, the analysis of body fluid evidence determines the cellular origin of a sample, aiding in the reconstruction of a potential crime. Messenger ribonucleic acid (mRNA) based confirmatory tests address limitations of current conventional methods, providing increased specificity and sensitivity, minimal sample consumption, and the detection of a broader range of body fluids. However, they require expensive instrumentation, longer reaction times, and lack portability. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) coupled with clustered regular interspaced short palindromic repeats (CRISPR) with CRISPR-associated protein 12a (Cas12a) has the potential to overcome these challenges. This approach offers reduced testing time and cost, while potentially providing equivalent sensitivity and specificity, as observed in the field of viral diagnostics. Visual detection capabilities enable the development of rapid, portable screening tests suitable for testing at the crime scene. In the context of a sexual assault investigation, RT-LAMP+CRISPR-Cas12a could potentially increase the efficiency and detection rate. This study compares this novel method to two other mRNA-based methods, endpoint reverse transcription polymerase chain reaction (RT-PCR) multiplex assay CellTyper 2, and a real-time reverse transcription quantitative PCR (RT-qPCR) multiplex assay. The tests’ sensitivity and specificity were evaluated on single-source and mixed body fluid samples, including rectal mucosa, a fluid which is minimally explored in forensic literature. The RT-qPCR assay demonstrated the highest sensitivity, specificity, and precision in mixed samples. In addition, RT-qPCR offers a greater linear dynamic range, faster processing time and easier methodology compared to CellTyper 2, only limited by its expensive nature. Notably, rectal mucosa samples exhibited non-specific marker expression of CellTyper 2 markers and expression of CYP2B7P (vaginal fluid) for all methods. This emphasises the need for a dedicated rectal mucosa marker. RT-LAMP+CRISPR-Cas12a exhibited a high specificity, displaying off-target expression of CYP2B7P in two fluid types. However, the method lacked sensitivity and precision for most markers except MMP3 (menstrual blood), demonstrating detection down to 1:10,000 with 100 % specificity. RT-LAMP+CRISPR requires further development, but its quick, inexpensive nature and high specificity suggest it has potential as a confirmatory test that could reduce the limitations of existing methods.
期刊介绍:
Forensic Science International: Genetics is the premier journal in the field of Forensic Genetics. This branch of Forensic Science can be defined as the application of genetics to human and non-human material (in the sense of a science with the purpose of studying inherited characteristics for the analysis of inter- and intra-specific variations in populations) for the resolution of legal conflicts.
The scope of the journal includes:
Forensic applications of human polymorphism.
Testing of paternity and other family relationships, immigration cases, typing of biological stains and tissues from criminal casework, identification of human remains by DNA testing methodologies.
Description of human polymorphisms of forensic interest, with special interest in DNA polymorphisms.
Autosomal DNA polymorphisms, mini- and microsatellites (or short tandem repeats, STRs), single nucleotide polymorphisms (SNPs), X and Y chromosome polymorphisms, mtDNA polymorphisms, and any other type of DNA variation with potential forensic applications.
Non-human DNA polymorphisms for crime scene investigation.
Population genetics of human polymorphisms of forensic interest.
Population data, especially from DNA polymorphisms of interest for the solution of forensic problems.
DNA typing methodologies and strategies.
Biostatistical methods in forensic genetics.
Evaluation of DNA evidence in forensic problems (such as paternity or immigration cases, criminal casework, identification), classical and new statistical approaches.
Standards in forensic genetics.
Recommendations of regulatory bodies concerning methods, markers, interpretation or strategies or proposals for procedural or technical standards.
Quality control.
Quality control and quality assurance strategies, proficiency testing for DNA typing methodologies.
Criminal DNA databases.
Technical, legal and statistical issues.
General ethical and legal issues related to forensic genetics.