{"title":"用于抗菌应用的简单和混合材料","authors":"Dominik Műller , Agata Krakowska , Joanna Zontek-Wilkowska , Beata Paczosa-Bator","doi":"10.1016/j.colsurfb.2025.114747","DOIUrl":null,"url":null,"abstract":"<div><div>Simple and hybrid materials represent alternatives to traditional antibiotics in the ongoing effort to combat the growing issue of antibiotic-resistant bacterial strains, which have emerged due to the misuse of antibiotic treatments and improper disposal of antibiotic-related waste. First, after outlining the scale of the issue, multiple potential agents that may help address the problem are presented. Inorganic metal-based and metal oxide-based nanomaterials such as silver, gold, gallium, zinc/zinc oxide, copper/copper oxide, titanium dioxide, and magnesium oxide nanoparticles are characterized, their synthesis is described, and examples of their potential antimicrobial applications are provided. Subsequent sections in a similar vein, explore nonmetallic inorganic nanoparticles and characterize organic materials that may function either as antimicrobial agents themselves (e.g., antimicrobial peptides, chitosan) or as structural components and drug carriers (e.g., cellulose, SNLs, liposomes). The final chapter offers examples of combining inorganic and organic materials into hybrid solutions for specialized antimicrobial applications and treatments, aiming to enhance their inherent antimicrobial properties or reduce the required dosage of antibiotics in therapy.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"253 ","pages":"Article 114747"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple and hybrid materials for antimicrobial applications\",\"authors\":\"Dominik Műller , Agata Krakowska , Joanna Zontek-Wilkowska , Beata Paczosa-Bator\",\"doi\":\"10.1016/j.colsurfb.2025.114747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Simple and hybrid materials represent alternatives to traditional antibiotics in the ongoing effort to combat the growing issue of antibiotic-resistant bacterial strains, which have emerged due to the misuse of antibiotic treatments and improper disposal of antibiotic-related waste. First, after outlining the scale of the issue, multiple potential agents that may help address the problem are presented. Inorganic metal-based and metal oxide-based nanomaterials such as silver, gold, gallium, zinc/zinc oxide, copper/copper oxide, titanium dioxide, and magnesium oxide nanoparticles are characterized, their synthesis is described, and examples of their potential antimicrobial applications are provided. Subsequent sections in a similar vein, explore nonmetallic inorganic nanoparticles and characterize organic materials that may function either as antimicrobial agents themselves (e.g., antimicrobial peptides, chitosan) or as structural components and drug carriers (e.g., cellulose, SNLs, liposomes). The final chapter offers examples of combining inorganic and organic materials into hybrid solutions for specialized antimicrobial applications and treatments, aiming to enhance their inherent antimicrobial properties or reduce the required dosage of antibiotics in therapy.</div></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"253 \",\"pages\":\"Article 114747\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776525002541\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525002541","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Simple and hybrid materials for antimicrobial applications
Simple and hybrid materials represent alternatives to traditional antibiotics in the ongoing effort to combat the growing issue of antibiotic-resistant bacterial strains, which have emerged due to the misuse of antibiotic treatments and improper disposal of antibiotic-related waste. First, after outlining the scale of the issue, multiple potential agents that may help address the problem are presented. Inorganic metal-based and metal oxide-based nanomaterials such as silver, gold, gallium, zinc/zinc oxide, copper/copper oxide, titanium dioxide, and magnesium oxide nanoparticles are characterized, their synthesis is described, and examples of their potential antimicrobial applications are provided. Subsequent sections in a similar vein, explore nonmetallic inorganic nanoparticles and characterize organic materials that may function either as antimicrobial agents themselves (e.g., antimicrobial peptides, chitosan) or as structural components and drug carriers (e.g., cellulose, SNLs, liposomes). The final chapter offers examples of combining inorganic and organic materials into hybrid solutions for specialized antimicrobial applications and treatments, aiming to enhance their inherent antimicrobial properties or reduce the required dosage of antibiotics in therapy.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.