{"title":"营养转运体轴和功能化载体的双重调节:精确口服维生素D递送的范式转变","authors":"Zixiao Wang, Yixiang Liu","doi":"10.1016/j.colsurfb.2025.114769","DOIUrl":null,"url":null,"abstract":"<div><div>The transintestinal epithelial absorption of vitamin D is intricately regulated by specific transport protein networks. Emerging evidence from molecular nutrition research reveals that certain dietary nutrients can enhance intestinal vitamin D absorption through targeted modulation of lipid transport pathways. Despite significant advancements in vitamin D delivery systems demonstrating excellent intestinal mucoadhesion and in vitro bioaccessibility, their clinical translation remains limited by suboptimal in vivo bioavailability. To address this critical challenge, we propose an innovative synergistic nutrient absorption strategy that establishes precise coordination among three key elements: dietary nutrient composition, transport protein regulation, and intestinal absorption optimization. This comprehensive review systematically examines: (1) The molecular mechanisms governing transintestinal vitamin D transport and physiological modulation of protein-mediated absorption pathways; (2) The regulatory effects of dietary components on vitamin D absorption efficiency through protein pathway modulation, proposing a novel \"nutrient-transporter-vitamin D axis\" strategy integrating cutting-edge carrier technologies; (3) Future perspectives for developing functionalized vitamin D delivery systems. The proposed paradigm shift, combining nutrient-mediated transport enhancement with advanced carrier engineering, represents a transformative approach to overcome current limitations in oral vitamin D delivery. This dual-modulation strategy synergistically improves intestinal absorption and systemic bioavailability through simultaneous optimization of biological transport mechanisms and pharmaceutical delivery parameters, offering new possibilities for precision nutrition interventions.</div></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":"253 ","pages":"Article 114769"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-modulation of nutrient-transporter axis and functionalized carriers: A paradigm shift for precision oral vitamin D delivery\",\"authors\":\"Zixiao Wang, Yixiang Liu\",\"doi\":\"10.1016/j.colsurfb.2025.114769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The transintestinal epithelial absorption of vitamin D is intricately regulated by specific transport protein networks. Emerging evidence from molecular nutrition research reveals that certain dietary nutrients can enhance intestinal vitamin D absorption through targeted modulation of lipid transport pathways. Despite significant advancements in vitamin D delivery systems demonstrating excellent intestinal mucoadhesion and in vitro bioaccessibility, their clinical translation remains limited by suboptimal in vivo bioavailability. To address this critical challenge, we propose an innovative synergistic nutrient absorption strategy that establishes precise coordination among three key elements: dietary nutrient composition, transport protein regulation, and intestinal absorption optimization. This comprehensive review systematically examines: (1) The molecular mechanisms governing transintestinal vitamin D transport and physiological modulation of protein-mediated absorption pathways; (2) The regulatory effects of dietary components on vitamin D absorption efficiency through protein pathway modulation, proposing a novel \\\"nutrient-transporter-vitamin D axis\\\" strategy integrating cutting-edge carrier technologies; (3) Future perspectives for developing functionalized vitamin D delivery systems. The proposed paradigm shift, combining nutrient-mediated transport enhancement with advanced carrier engineering, represents a transformative approach to overcome current limitations in oral vitamin D delivery. This dual-modulation strategy synergistically improves intestinal absorption and systemic bioavailability through simultaneous optimization of biological transport mechanisms and pharmaceutical delivery parameters, offering new possibilities for precision nutrition interventions.</div></div>\",\"PeriodicalId\":279,\"journal\":{\"name\":\"Colloids and Surfaces B: Biointerfaces\",\"volume\":\"253 \",\"pages\":\"Article 114769\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces B: Biointerfaces\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927776525002760\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776525002760","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Dual-modulation of nutrient-transporter axis and functionalized carriers: A paradigm shift for precision oral vitamin D delivery
The transintestinal epithelial absorption of vitamin D is intricately regulated by specific transport protein networks. Emerging evidence from molecular nutrition research reveals that certain dietary nutrients can enhance intestinal vitamin D absorption through targeted modulation of lipid transport pathways. Despite significant advancements in vitamin D delivery systems demonstrating excellent intestinal mucoadhesion and in vitro bioaccessibility, their clinical translation remains limited by suboptimal in vivo bioavailability. To address this critical challenge, we propose an innovative synergistic nutrient absorption strategy that establishes precise coordination among three key elements: dietary nutrient composition, transport protein regulation, and intestinal absorption optimization. This comprehensive review systematically examines: (1) The molecular mechanisms governing transintestinal vitamin D transport and physiological modulation of protein-mediated absorption pathways; (2) The regulatory effects of dietary components on vitamin D absorption efficiency through protein pathway modulation, proposing a novel "nutrient-transporter-vitamin D axis" strategy integrating cutting-edge carrier technologies; (3) Future perspectives for developing functionalized vitamin D delivery systems. The proposed paradigm shift, combining nutrient-mediated transport enhancement with advanced carrier engineering, represents a transformative approach to overcome current limitations in oral vitamin D delivery. This dual-modulation strategy synergistically improves intestinal absorption and systemic bioavailability through simultaneous optimization of biological transport mechanisms and pharmaceutical delivery parameters, offering new possibilities for precision nutrition interventions.
期刊介绍:
Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields.
Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication.
The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.