{"title":"完备图的路径树的拉普拉斯特征多项式","authors":"Jinqiu Zhou, Weigen Yan","doi":"10.1016/j.dam.2025.04.025","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the path tree of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Denote by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> the weighted path with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, edge set <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>|</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>, weighted function <span><math><mrow><mi>w</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>i</mi><mo>/</mo><mn>2</mn></mrow></math></span> if <span><math><mi>i</mi></math></span> is even and <span><math><mrow><mi>w</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> otherwise. Guo and Chen (2024) proved that the matching polynomial of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> can be represented by the matching polynomials of the compete graphs. In this paper, we show that the Laplacian characteristic polynomial <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> satisfies: <span><span><span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mi>x</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><munderover><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>2</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><msub><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>/</mo><mrow><mo>(</mo><mi>i</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are the matching polynomials of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></math></span>, respectively, and <span><math><mrow><msub><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>=</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mo>⋯</mo><mrow><mo>(</mo><mi>i</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"372 ","pages":"Pages 308-313"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Laplacian characteristic polynomial of the path-tree of the complete graph\",\"authors\":\"Jinqiu Zhou, Weigen Yan\",\"doi\":\"10.1016/j.dam.2025.04.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the path tree of the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Denote by <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> the weighted path with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></mrow></math></span>, edge set <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>|</mo><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mn>2</mn><mi>n</mi><mo>−</mo><mn>2</mn><mo>}</mo></mrow></mrow></math></span>, weighted function <span><math><mrow><mi>w</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>i</mi><mo>/</mo><mn>2</mn></mrow></math></span> if <span><math><mi>i</mi></math></span> is even and <span><math><mrow><mi>w</mi><mrow><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> otherwise. Guo and Chen (2024) proved that the matching polynomial of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> can be represented by the matching polynomials of the compete graphs. In this paper, we show that the Laplacian characteristic polynomial <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> satisfies: <span><span><span><math><mrow><mi>σ</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mi>x</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><munderover><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>2</mn></mrow><mrow><mi>n</mi></mrow></munderover><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow><mrow><msub><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>/</mo><mrow><mo>(</mo><mi>i</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> are the matching polynomials of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn><mi>i</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></math></span>, respectively, and <span><math><mrow><msub><mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi><mo>+</mo><mn>2</mn></mrow></msub><mo>=</mo><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow><mo>⋯</mo><mrow><mo>(</mo><mi>i</mi><mo>−</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"372 \",\"pages\":\"Pages 308-313\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001945\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001945","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The Laplacian characteristic polynomial of the path-tree of the complete graph
Let be the path tree of the complete graph . Denote by the weighted path with vertex set , edge set , weighted function if is even and otherwise. Guo and Chen (2024) proved that the matching polynomial of can be represented by the matching polynomials of the compete graphs. In this paper, we show that the Laplacian characteristic polynomial of satisfies: where and are the matching polynomials of and , respectively, and .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.