Jie Xu , Longjian Zhou , Yiming Ma , Ruwei Geng , Haocheng Wu , Yu Fan , Lin Wang
{"title":"采用综合数值模型研究了外加磁场对铝-钢MIG焊-钎焊热场的影响","authors":"Jie Xu , Longjian Zhou , Yiming Ma , Ruwei Geng , Haocheng Wu , Yu Fan , Lin Wang","doi":"10.1016/j.ijthermalsci.2025.109981","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the influence of transverse-parallel magnetic fields (TPMF) on the thermal dynamics of aluminum-steel MIG welding-brazing using a three-dimensional fluid-solid coupled numerical model. The model integrates electromagnetic-fluid dynamics of arc plasma and heat transfer in solid workpieces, enabling self-adaptive prediction of arc morphology and thermal cycles under varying TPMF excitation parameters (current: 0–20 A, frequency: 2–30 Hz). Results show that TPMF induces periodic arc oscillation, changing the peak temperatures at the aluminium-steel interface and expanding the heat-affected zone. Optimal parameters (10 A, 10–15 Hz) enhance interfacial wetting and joint quality, whereas excessive parameters (>10 A or >15 Hz) destabilize the arc and hinder metal spreading. Experimental validation confirms the model's accuracy, providing a reliable tool for optimizing TPMF-assisted welding processes.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"215 ","pages":"Article 109981"},"PeriodicalIF":4.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the influence of external magnetic field on the thermal field of aluminum-steel MIG welding-brazing via an integrated numerical model\",\"authors\":\"Jie Xu , Longjian Zhou , Yiming Ma , Ruwei Geng , Haocheng Wu , Yu Fan , Lin Wang\",\"doi\":\"10.1016/j.ijthermalsci.2025.109981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the influence of transverse-parallel magnetic fields (TPMF) on the thermal dynamics of aluminum-steel MIG welding-brazing using a three-dimensional fluid-solid coupled numerical model. The model integrates electromagnetic-fluid dynamics of arc plasma and heat transfer in solid workpieces, enabling self-adaptive prediction of arc morphology and thermal cycles under varying TPMF excitation parameters (current: 0–20 A, frequency: 2–30 Hz). Results show that TPMF induces periodic arc oscillation, changing the peak temperatures at the aluminium-steel interface and expanding the heat-affected zone. Optimal parameters (10 A, 10–15 Hz) enhance interfacial wetting and joint quality, whereas excessive parameters (>10 A or >15 Hz) destabilize the arc and hinder metal spreading. Experimental validation confirms the model's accuracy, providing a reliable tool for optimizing TPMF-assisted welding processes.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"215 \",\"pages\":\"Article 109981\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072925003047\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072925003047","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
采用三维流固耦合数值模型研究了横向平行磁场对铝-钢MIG焊-钎焊热动力学的影响。该模型集成了电弧等离子体的电磁流体动力学和固体工件中的传热,能够在不同的TPMF激励参数(电流:0-20 A,频率:2-30 Hz)下自适应预测电弧形态和热循环。结果表明:TPMF引起周期性电弧振荡,改变了铝-钢界面的峰值温度,扩大了热影响区;最佳参数(10 A, 10 - 15 Hz)可以增强界面润湿和接头质量,而过高的参数(10 A或15 Hz)会破坏电弧的稳定性,阻碍金属的扩散。实验验证了该模型的准确性,为优化tpmf辅助焊接工艺提供了可靠的工具。
Investigation on the influence of external magnetic field on the thermal field of aluminum-steel MIG welding-brazing via an integrated numerical model
This study investigates the influence of transverse-parallel magnetic fields (TPMF) on the thermal dynamics of aluminum-steel MIG welding-brazing using a three-dimensional fluid-solid coupled numerical model. The model integrates electromagnetic-fluid dynamics of arc plasma and heat transfer in solid workpieces, enabling self-adaptive prediction of arc morphology and thermal cycles under varying TPMF excitation parameters (current: 0–20 A, frequency: 2–30 Hz). Results show that TPMF induces periodic arc oscillation, changing the peak temperatures at the aluminium-steel interface and expanding the heat-affected zone. Optimal parameters (10 A, 10–15 Hz) enhance interfacial wetting and joint quality, whereas excessive parameters (>10 A or >15 Hz) destabilize the arc and hinder metal spreading. Experimental validation confirms the model's accuracy, providing a reliable tool for optimizing TPMF-assisted welding processes.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.