Artur Pinski , Syed Muhammad Muntazir Mehdi , Alexander Betekhtin
{"title":"荞麦非生物胁迫响应的分子机制","authors":"Artur Pinski , Syed Muhammad Muntazir Mehdi , Alexander Betekhtin","doi":"10.1016/j.plantsci.2025.112526","DOIUrl":null,"url":null,"abstract":"<div><div>Plants have endured evolutionary changes for hundreds of years under the impact of increasing abiotic and biotic stress due to increasing human activities over the past centuries. Scientists have been working to understand the molecular mechanisms of plant responses to severe environmental stress, as plants have complex molecular arrangements to respond and adapt to abiotic stress, including drought, cold, and heat stress. Buckwheat (<em>Fagopyrum</em> spp.) is a resilient pseudocereal known for its nutritional value and adaptability to various environmental conditions, making it an essential crop in sustainable agriculture. It is particularly noted for its gluten-free nature and high-quality protein content, which benefit those with gluten sensitivities. However, recent studies revealed that buckwheat cultivation faces significant challenges from abiotic stressors such as drought, salinity, temperature extremes, and heavy metal toxicity, which can adversely affect its growth and yield. We have acknowledged key genes and factors in regulating complex responses and tolerance of plants in response to abiotic stresses. We compiled new data about diverse mechanisms by which different <em>Fagopyrum</em> species manage abiotic stress, encompassing physiological, biochemical, and molecular adaptations. As global food production demands rise, effective management strategies for these stress factors are increasingly critical for optimising buckwheat production and ensuring food security in a changing climate.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"357 ","pages":"Article 112526"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms underlying abiotic stress responses in buckwheat\",\"authors\":\"Artur Pinski , Syed Muhammad Muntazir Mehdi , Alexander Betekhtin\",\"doi\":\"10.1016/j.plantsci.2025.112526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Plants have endured evolutionary changes for hundreds of years under the impact of increasing abiotic and biotic stress due to increasing human activities over the past centuries. Scientists have been working to understand the molecular mechanisms of plant responses to severe environmental stress, as plants have complex molecular arrangements to respond and adapt to abiotic stress, including drought, cold, and heat stress. Buckwheat (<em>Fagopyrum</em> spp.) is a resilient pseudocereal known for its nutritional value and adaptability to various environmental conditions, making it an essential crop in sustainable agriculture. It is particularly noted for its gluten-free nature and high-quality protein content, which benefit those with gluten sensitivities. However, recent studies revealed that buckwheat cultivation faces significant challenges from abiotic stressors such as drought, salinity, temperature extremes, and heavy metal toxicity, which can adversely affect its growth and yield. We have acknowledged key genes and factors in regulating complex responses and tolerance of plants in response to abiotic stresses. We compiled new data about diverse mechanisms by which different <em>Fagopyrum</em> species manage abiotic stress, encompassing physiological, biochemical, and molecular adaptations. As global food production demands rise, effective management strategies for these stress factors are increasingly critical for optimising buckwheat production and ensuring food security in a changing climate.</div></div>\",\"PeriodicalId\":20273,\"journal\":{\"name\":\"Plant Science\",\"volume\":\"357 \",\"pages\":\"Article 112526\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016894522500144X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016894522500144X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Molecular mechanisms underlying abiotic stress responses in buckwheat
Plants have endured evolutionary changes for hundreds of years under the impact of increasing abiotic and biotic stress due to increasing human activities over the past centuries. Scientists have been working to understand the molecular mechanisms of plant responses to severe environmental stress, as plants have complex molecular arrangements to respond and adapt to abiotic stress, including drought, cold, and heat stress. Buckwheat (Fagopyrum spp.) is a resilient pseudocereal known for its nutritional value and adaptability to various environmental conditions, making it an essential crop in sustainable agriculture. It is particularly noted for its gluten-free nature and high-quality protein content, which benefit those with gluten sensitivities. However, recent studies revealed that buckwheat cultivation faces significant challenges from abiotic stressors such as drought, salinity, temperature extremes, and heavy metal toxicity, which can adversely affect its growth and yield. We have acknowledged key genes and factors in regulating complex responses and tolerance of plants in response to abiotic stresses. We compiled new data about diverse mechanisms by which different Fagopyrum species manage abiotic stress, encompassing physiological, biochemical, and molecular adaptations. As global food production demands rise, effective management strategies for these stress factors are increasingly critical for optimising buckwheat production and ensuring food security in a changing climate.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.