TbTiO3的磁性和电子行为:低温应用的综合研究

IF 3.9 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Sohail Ait Jmal , Mohamed Ait Tamerd , Loubaba Attou , Mohamed Balli
{"title":"TbTiO3的磁性和电子行为:低温应用的综合研究","authors":"Sohail Ait Jmal ,&nbsp;Mohamed Ait Tamerd ,&nbsp;Loubaba Attou ,&nbsp;Mohamed Balli","doi":"10.1016/j.mseb.2025.118399","DOIUrl":null,"url":null,"abstract":"<div><div>Meeting the requirements of low-temperature magnetocaloric cooling necessitates materials with attractive magnetic properties. This has led to a growing interest in developing strongly correlated materials such as ortho-perovskite oxides RMO<sub>3</sub> (R = rare earth, M = transition metal). In this study, Density Functional Theory (DFT) and Monte Carlo simulations (MCs) were used to systematically investigate the structural, electronic, magnetic, and magnetocaloric properties of TbTiO<sub>3</sub> compound. In particular, TbTiO<sub>3</sub> is found to be a ferromagnetic compound exhibiting a semiconducting behavior with a band gap of 0.48 eV. Additionally, a ferromagnetic (Tb-Ti) interaction significantly exceeds the other interactions in TbTiO<sub>3</sub> based on the Ising model, the magnetic contributions of Tb and Ti atoms within TbTiO<sub>3</sub>, and the magnetocrystalline anisotropy energies are elucidated. Interestingly, TbTiO<sub>3</sub> exhibits two second-order magnetic transitions at T<sub>s</sub> = 17 K and T<sub>c</sub> = 55 K. These latter are associated with a significant magnetic entropy change (−ΔS<sub>mag</sub>), featuring peak values of 10.83 J/kg K and 6.3 J/kg K, as well as adiabatic temperature changes of 6.83 K and 3.5 K, under 5 T at T<sub>s</sub>, and T<sub>c,</sub> respectively. Indeed, TbTiO<sub>3</sub> achieves an impressive refrigerant capacity of 704.48 J/kg, due to the large operating temperature range, making TbTiO<sub>3</sub> suitable as an active element in low-temperature magnetic refrigerators.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"319 ","pages":"Article 118399"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the magnetism and electronic behavior of TbTiO3: A comprehensive study for cryogenic applications\",\"authors\":\"Sohail Ait Jmal ,&nbsp;Mohamed Ait Tamerd ,&nbsp;Loubaba Attou ,&nbsp;Mohamed Balli\",\"doi\":\"10.1016/j.mseb.2025.118399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Meeting the requirements of low-temperature magnetocaloric cooling necessitates materials with attractive magnetic properties. This has led to a growing interest in developing strongly correlated materials such as ortho-perovskite oxides RMO<sub>3</sub> (R = rare earth, M = transition metal). In this study, Density Functional Theory (DFT) and Monte Carlo simulations (MCs) were used to systematically investigate the structural, electronic, magnetic, and magnetocaloric properties of TbTiO<sub>3</sub> compound. In particular, TbTiO<sub>3</sub> is found to be a ferromagnetic compound exhibiting a semiconducting behavior with a band gap of 0.48 eV. Additionally, a ferromagnetic (Tb-Ti) interaction significantly exceeds the other interactions in TbTiO<sub>3</sub> based on the Ising model, the magnetic contributions of Tb and Ti atoms within TbTiO<sub>3</sub>, and the magnetocrystalline anisotropy energies are elucidated. Interestingly, TbTiO<sub>3</sub> exhibits two second-order magnetic transitions at T<sub>s</sub> = 17 K and T<sub>c</sub> = 55 K. These latter are associated with a significant magnetic entropy change (−ΔS<sub>mag</sub>), featuring peak values of 10.83 J/kg K and 6.3 J/kg K, as well as adiabatic temperature changes of 6.83 K and 3.5 K, under 5 T at T<sub>s</sub>, and T<sub>c,</sub> respectively. Indeed, TbTiO<sub>3</sub> achieves an impressive refrigerant capacity of 704.48 J/kg, due to the large operating temperature range, making TbTiO<sub>3</sub> suitable as an active element in low-temperature magnetic refrigerators.</div></div>\",\"PeriodicalId\":18233,\"journal\":{\"name\":\"Materials Science and Engineering: B\",\"volume\":\"319 \",\"pages\":\"Article 118399\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: B\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921510725004234\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725004234","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

满足低温磁热冷却的要求,需要具有吸引磁性能的材料。这引起了人们对开发强相关材料的兴趣,如正钙钛矿氧化物RMO3 (R =稀土,M =过渡金属)。本研究采用密度泛函理论(DFT)和蒙特卡罗模拟(MCs)对TbTiO3化合物的结构、电子、磁性和磁热学性质进行了系统的研究。TbTiO3是一种具有半导体特性的铁磁性化合物,带隙为0.48 eV。此外,基于Ising模型,TbTiO3中的铁磁性相互作用(Tb-Ti)明显超过其他相互作用,TbTiO3中Tb和Ti原子的磁性贡献,以及磁晶各向异性能。有趣的是,TbTiO3在Ts = 17 K和Tc = 55 K时表现出两次二阶磁跃迁。后者与显著的磁熵变化(−ΔSmag)相关,其峰值为10.83 J/kg K和6.3 J/kg K,绝热温度变化为6.83 K和3.5 K,分别在Ts和Tc的5 T下。事实上,由于工作温度范围大,TbTiO3达到了704.48 J/kg的令人印象深刻的制冷剂容量,使TbTiO3适合作为低温磁性冰箱中的有源元件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the magnetism and electronic behavior of TbTiO3: A comprehensive study for cryogenic applications

On the magnetism and electronic behavior of TbTiO3: A comprehensive study for cryogenic applications
Meeting the requirements of low-temperature magnetocaloric cooling necessitates materials with attractive magnetic properties. This has led to a growing interest in developing strongly correlated materials such as ortho-perovskite oxides RMO3 (R = rare earth, M = transition metal). In this study, Density Functional Theory (DFT) and Monte Carlo simulations (MCs) were used to systematically investigate the structural, electronic, magnetic, and magnetocaloric properties of TbTiO3 compound. In particular, TbTiO3 is found to be a ferromagnetic compound exhibiting a semiconducting behavior with a band gap of 0.48 eV. Additionally, a ferromagnetic (Tb-Ti) interaction significantly exceeds the other interactions in TbTiO3 based on the Ising model, the magnetic contributions of Tb and Ti atoms within TbTiO3, and the magnetocrystalline anisotropy energies are elucidated. Interestingly, TbTiO3 exhibits two second-order magnetic transitions at Ts = 17 K and Tc = 55 K. These latter are associated with a significant magnetic entropy change (−ΔSmag), featuring peak values of 10.83 J/kg K and 6.3 J/kg K, as well as adiabatic temperature changes of 6.83 K and 3.5 K, under 5 T at Ts, and Tc, respectively. Indeed, TbTiO3 achieves an impressive refrigerant capacity of 704.48 J/kg, due to the large operating temperature range, making TbTiO3 suitable as an active element in low-temperature magnetic refrigerators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science and Engineering: B
Materials Science and Engineering: B 工程技术-材料科学:综合
CiteScore
5.60
自引率
2.80%
发文量
481
审稿时长
3.5 months
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related to the electronic, electrochemical, ionic, magnetic, optical, and biosensing properties of solid state materials in bulk, thin film and particulate forms. Papers dealing with synthesis, processing, characterization, structure, physical properties and computational aspects of nano-crystalline, crystalline, amorphous and glassy forms of ceramics, semiconductors, layered insertion compounds, low-dimensional compounds and systems, fast-ion conductors, polymers and dielectrics are viewed as suitable for publication. Articles focused on nano-structured aspects of these advanced solid-state materials will also be considered suitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信