极大外平面图的奇4着色

IF 0.7 3区 数学 Q2 MATHEMATICS
Masaki Kashima , Shun-ichi Maezawa , Kakeru Osako , Kenta Ozeki , Shoichi Tsuchiya
{"title":"极大外平面图的奇4着色","authors":"Masaki Kashima ,&nbsp;Shun-ichi Maezawa ,&nbsp;Kakeru Osako ,&nbsp;Kenta Ozeki ,&nbsp;Shoichi Tsuchiya","doi":"10.1016/j.disc.2025.114556","DOIUrl":null,"url":null,"abstract":"<div><div>An odd coloring of a graph <em>G</em> is a proper coloring with the following property: For every vertex <em>v</em> of <em>G</em>, there exists a color <em>i</em> such that there are an odd number of vertices of color <em>i</em> in the neighborhood of <em>v</em>. Caro, Petruševski, and Škrekovski proved that every outerplanar graph admits an odd 5-coloring. Since the cycle of length 5 does not admit an odd 4-coloring, this result is best possible. In this paper, we prove that every maximal outerplanar graph admits an odd 4-coloring. We also show that the list version holds.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 10","pages":"Article 114556"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An odd 4-coloring of a maximal outerplanar graph\",\"authors\":\"Masaki Kashima ,&nbsp;Shun-ichi Maezawa ,&nbsp;Kakeru Osako ,&nbsp;Kenta Ozeki ,&nbsp;Shoichi Tsuchiya\",\"doi\":\"10.1016/j.disc.2025.114556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An odd coloring of a graph <em>G</em> is a proper coloring with the following property: For every vertex <em>v</em> of <em>G</em>, there exists a color <em>i</em> such that there are an odd number of vertices of color <em>i</em> in the neighborhood of <em>v</em>. Caro, Petruševski, and Škrekovski proved that every outerplanar graph admits an odd 5-coloring. Since the cycle of length 5 does not admit an odd 4-coloring, this result is best possible. In this paper, we prove that every maximal outerplanar graph admits an odd 4-coloring. We also show that the list version holds.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 10\",\"pages\":\"Article 114556\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001645\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001645","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图G的奇着色是具有以下性质的真着色:对于G的每一个顶点v,存在一个颜色i使得在v的邻域中有奇数个颜色i的顶点。Caro, Petruševski, Škrekovski证明了每一个外平面图都允许一个奇5着色。因为长度为5的循环不允许奇数4着色,所以这个结果是最好的。本文证明了每一个极大的外平面图都存在奇4着色。我们还展示了list版本的保存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An odd 4-coloring of a maximal outerplanar graph
An odd coloring of a graph G is a proper coloring with the following property: For every vertex v of G, there exists a color i such that there are an odd number of vertices of color i in the neighborhood of v. Caro, Petruševski, and Škrekovski proved that every outerplanar graph admits an odd 5-coloring. Since the cycle of length 5 does not admit an odd 4-coloring, this result is best possible. In this paper, we prove that every maximal outerplanar graph admits an odd 4-coloring. We also show that the list version holds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信