过渡金属氧化物作为晶体硅太阳能电池的空穴传输层:进展与展望

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Linfeng Yang , Xiaofei Xu , Jingjie Li , Wanyu Lu , Dayong Yuan , Tinghao Liu , Hui Yan , Qian Kang , Yongzhe Zhang
{"title":"过渡金属氧化物作为晶体硅太阳能电池的空穴传输层:进展与展望","authors":"Linfeng Yang ,&nbsp;Xiaofei Xu ,&nbsp;Jingjie Li ,&nbsp;Wanyu Lu ,&nbsp;Dayong Yuan ,&nbsp;Tinghao Liu ,&nbsp;Hui Yan ,&nbsp;Qian Kang ,&nbsp;Yongzhe Zhang","doi":"10.1016/j.solmat.2025.113682","DOIUrl":null,"url":null,"abstract":"<div><div>High-efficiency crystalline silicon (<em>c</em>-Si) solar cells, including silicon heterojunction (SHJ) and tunnel oxide passivating contact (TOPCon), are hampered by their capital-intensive preparation process, which necessitate the use of flammable and toxic gasses. Moreover, the parasitic absorption of the doped amorphous silicon within SHJ cells, particularly in the short wavelength range, inevitably leads to a decline in device performance. Given these drawbacks, silicon compound heterojunction (SCH) solar cells have garnered significant attention owing to their reduced parasitic absorption, lower production costs, and simpler preparation procedures. The electron transport layer (ETL) and hole transport layer (HTL) ensure efficient extraction and transport of electrons and holes, and play a decisive role in device performance. The HTL materials include transition metal oxide materials (TMOs), organic materials, low-dimensional semiconductor materials, etc. This comprehensive review summarizes the research progress of SCH solar cells, with a focus on TMOs as HTL. The review primarily delves into the transport mechanism of TMOs as HTL, the factors influencing device performance, and the corresponding mitigation strategies. This review aims to foster a deeper understanding of the performance-impacting factors and offer insights for the future development of high-efficiency solar cells.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"290 ","pages":"Article 113682"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transition metal oxide as hole transport layer for crystalline silicon solar cells: Progress and prospects\",\"authors\":\"Linfeng Yang ,&nbsp;Xiaofei Xu ,&nbsp;Jingjie Li ,&nbsp;Wanyu Lu ,&nbsp;Dayong Yuan ,&nbsp;Tinghao Liu ,&nbsp;Hui Yan ,&nbsp;Qian Kang ,&nbsp;Yongzhe Zhang\",\"doi\":\"10.1016/j.solmat.2025.113682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-efficiency crystalline silicon (<em>c</em>-Si) solar cells, including silicon heterojunction (SHJ) and tunnel oxide passivating contact (TOPCon), are hampered by their capital-intensive preparation process, which necessitate the use of flammable and toxic gasses. Moreover, the parasitic absorption of the doped amorphous silicon within SHJ cells, particularly in the short wavelength range, inevitably leads to a decline in device performance. Given these drawbacks, silicon compound heterojunction (SCH) solar cells have garnered significant attention owing to their reduced parasitic absorption, lower production costs, and simpler preparation procedures. The electron transport layer (ETL) and hole transport layer (HTL) ensure efficient extraction and transport of electrons and holes, and play a decisive role in device performance. The HTL materials include transition metal oxide materials (TMOs), organic materials, low-dimensional semiconductor materials, etc. This comprehensive review summarizes the research progress of SCH solar cells, with a focus on TMOs as HTL. The review primarily delves into the transport mechanism of TMOs as HTL, the factors influencing device performance, and the corresponding mitigation strategies. This review aims to foster a deeper understanding of the performance-impacting factors and offer insights for the future development of high-efficiency solar cells.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"290 \",\"pages\":\"Article 113682\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825002831\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825002831","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

高效晶硅(c-Si)太阳能电池,包括硅异质结(SHJ)和隧道氧化物钝化接触(TOPCon),由于其资本密集型的制备过程,需要使用易燃和有毒气体,因此受到阻碍。此外,掺杂非晶硅在SHJ电池内的寄生吸收,特别是在短波长范围内,不可避免地导致器件性能的下降。考虑到这些缺点,硅化合物异质结(SCH)太阳能电池由于其减少寄生吸收、降低生产成本和更简单的制备过程而引起了极大的关注。电子输运层(ETL)和空穴输运层(HTL)保证了电子和空穴的高效提取和输运,对器件性能起着决定性的作用。html材料包括过渡金属氧化物材料(TMOs)、有机材料、低维半导体材料等。本文综述了高温超导太阳能电池的研究进展,重点介绍了高温超导太阳能电池的研究进展。本文主要探讨了TMOs作为html的传输机制、影响器件性能的因素以及相应的缓解策略。本文旨在促进对性能影响因素的深入了解,并为高效太阳能电池的未来发展提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transition metal oxide as hole transport layer for crystalline silicon solar cells: Progress and prospects

Transition metal oxide as hole transport layer for crystalline silicon solar cells: Progress and prospects
High-efficiency crystalline silicon (c-Si) solar cells, including silicon heterojunction (SHJ) and tunnel oxide passivating contact (TOPCon), are hampered by their capital-intensive preparation process, which necessitate the use of flammable and toxic gasses. Moreover, the parasitic absorption of the doped amorphous silicon within SHJ cells, particularly in the short wavelength range, inevitably leads to a decline in device performance. Given these drawbacks, silicon compound heterojunction (SCH) solar cells have garnered significant attention owing to their reduced parasitic absorption, lower production costs, and simpler preparation procedures. The electron transport layer (ETL) and hole transport layer (HTL) ensure efficient extraction and transport of electrons and holes, and play a decisive role in device performance. The HTL materials include transition metal oxide materials (TMOs), organic materials, low-dimensional semiconductor materials, etc. This comprehensive review summarizes the research progress of SCH solar cells, with a focus on TMOs as HTL. The review primarily delves into the transport mechanism of TMOs as HTL, the factors influencing device performance, and the corresponding mitigation strategies. This review aims to foster a deeper understanding of the performance-impacting factors and offer insights for the future development of high-efficiency solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信