Julianna Varjopuro , Aleksi Kamppinen , Aapo Poskela , Juha A. Karhu , Anders V. Lindfors , Kati Miettunen
{"title":"钙钛矿和硅太阳能电池板在不同环境条件下工作温度的计算模拟","authors":"Julianna Varjopuro , Aleksi Kamppinen , Aapo Poskela , Juha A. Karhu , Anders V. Lindfors , Kati Miettunen","doi":"10.1016/j.solmat.2025.113657","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the thermal behavior of perovskite panels is modeled in different ambient conditions, and simulated operation temperatures are compared with those of more commonly studied silicon solar panels. One specific need is for temperature model parameters for perovskite panels, to make, for instance, photovoltaic power prediction models that are more consistent with those of silicon solar panels. While the operating temperature of perovskite panels has gained less attention, it impacts their stability more compared with silicon devices. The applied 3D model allows studying the effects of varying ambient conditions on the heat distribution and temperature of commercial-sized panels. The results show that replacing the standard crystalline silicon with a typical perovskite absorber of ca. <span><math><mrow><mn>1</mn><mo>.</mo><mn>6</mn><mspace></mspace><mi>eV</mi></mrow></math></span> band gap as the active material may significantly reduce the module temperature in normal operation: the modeled average cell temperature of the perovskite module was ca. <span><math><mrow><mn>7</mn><mspace></mspace><mo>°</mo><mi>C</mi></mrow></math></span> less than that of the silicon module under reference conditions (ambient temperature <span><math><mrow><mn>20</mn><mspace></mspace><mo>°</mo><mi>C</mi></mrow></math></span>, wind speed <span><math><mrow><mn>1</mn><mspace></mspace><mi>m/s</mi></mrow></math></span>, and solar irradiance <span><math><mrow><mn>800</mn><mspace></mspace><msup><mrow><mi>W/m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>). The novelty of the study is the predicted set of perovskite-module-specific model parameters for the Sandia (<span><math><mrow><mi>a</mi><mo>=</mo><mo>−</mo><mn>3</mn><mo>.</mo><mn>77</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>129</mn></mrow></math></span>), Faiman (<span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>L0</mi></mrow></msub><mo>=</mo><mn>37</mn><mo>.</mo><mn>93</mn><mspace></mspace><msup><mrow><mi>W/m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>K</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>L1</mi></mrow></msub><mo>=</mo><mn>10</mn><mo>.</mo><mn>47</mn><mspace></mspace><msup><mrow><mi>Ws/m</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>K</mi></mrow></math></span>), PVsyst (<span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>19</mn><mo>.</mo><mn>29</mn><mspace></mspace><msup><mrow><mi>W/m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>K</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>5</mn><mo>.</mo><mn>27</mn><mspace></mspace><msup><mrow><mi>Ws/m</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>K</mi></mrow></math></span>), Mattei (<span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>PV</mi></mrow></msub><mo>=</mo><mn>4</mn><mo>.</mo><mn>49</mn><mi>v</mi><mo>+</mo><mn>16</mn><mo>.</mo><mn>65</mn></mrow></math></span>, <span><math><mi>v</mi></math></span> is the wind speed), and TRNSYS (<span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>Loss</mi></mrow></msub><mo>=</mo><mn>4</mn><mo>.</mo><mn>54</mn><mi>v</mi><mo>+</mo><mn>16</mn><mo>.</mo><mn>38</mn></mrow></math></span>) models that were determined by fitting these models to the simulated temperature data in the varying ambient conditions. These parameters enable estimation of perovskite panel temperature in varying outdoor conditions with existing PV system models.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"290 ","pages":"Article 113657"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational simulation of perovskite and silicon solar panel operating temperatures in varying ambient conditions\",\"authors\":\"Julianna Varjopuro , Aleksi Kamppinen , Aapo Poskela , Juha A. Karhu , Anders V. Lindfors , Kati Miettunen\",\"doi\":\"10.1016/j.solmat.2025.113657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, the thermal behavior of perovskite panels is modeled in different ambient conditions, and simulated operation temperatures are compared with those of more commonly studied silicon solar panels. One specific need is for temperature model parameters for perovskite panels, to make, for instance, photovoltaic power prediction models that are more consistent with those of silicon solar panels. While the operating temperature of perovskite panels has gained less attention, it impacts their stability more compared with silicon devices. The applied 3D model allows studying the effects of varying ambient conditions on the heat distribution and temperature of commercial-sized panels. The results show that replacing the standard crystalline silicon with a typical perovskite absorber of ca. <span><math><mrow><mn>1</mn><mo>.</mo><mn>6</mn><mspace></mspace><mi>eV</mi></mrow></math></span> band gap as the active material may significantly reduce the module temperature in normal operation: the modeled average cell temperature of the perovskite module was ca. <span><math><mrow><mn>7</mn><mspace></mspace><mo>°</mo><mi>C</mi></mrow></math></span> less than that of the silicon module under reference conditions (ambient temperature <span><math><mrow><mn>20</mn><mspace></mspace><mo>°</mo><mi>C</mi></mrow></math></span>, wind speed <span><math><mrow><mn>1</mn><mspace></mspace><mi>m/s</mi></mrow></math></span>, and solar irradiance <span><math><mrow><mn>800</mn><mspace></mspace><msup><mrow><mi>W/m</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>). The novelty of the study is the predicted set of perovskite-module-specific model parameters for the Sandia (<span><math><mrow><mi>a</mi><mo>=</mo><mo>−</mo><mn>3</mn><mo>.</mo><mn>77</mn></mrow></math></span>, <span><math><mrow><mi>b</mi><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>129</mn></mrow></math></span>), Faiman (<span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>L0</mi></mrow></msub><mo>=</mo><mn>37</mn><mo>.</mo><mn>93</mn><mspace></mspace><msup><mrow><mi>W/m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>K</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>L1</mi></mrow></msub><mo>=</mo><mn>10</mn><mo>.</mo><mn>47</mn><mspace></mspace><msup><mrow><mi>Ws/m</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>K</mi></mrow></math></span>), PVsyst (<span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><mn>19</mn><mo>.</mo><mn>29</mn><mspace></mspace><msup><mrow><mi>W/m</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>K</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>5</mn><mo>.</mo><mn>27</mn><mspace></mspace><msup><mrow><mi>Ws/m</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>K</mi></mrow></math></span>), Mattei (<span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>PV</mi></mrow></msub><mo>=</mo><mn>4</mn><mo>.</mo><mn>49</mn><mi>v</mi><mo>+</mo><mn>16</mn><mo>.</mo><mn>65</mn></mrow></math></span>, <span><math><mi>v</mi></math></span> is the wind speed), and TRNSYS (<span><math><mrow><msub><mrow><mi>U</mi></mrow><mrow><mi>Loss</mi></mrow></msub><mo>=</mo><mn>4</mn><mo>.</mo><mn>54</mn><mi>v</mi><mo>+</mo><mn>16</mn><mo>.</mo><mn>38</mn></mrow></math></span>) models that were determined by fitting these models to the simulated temperature data in the varying ambient conditions. These parameters enable estimation of perovskite panel temperature in varying outdoor conditions with existing PV system models.</div></div>\",\"PeriodicalId\":429,\"journal\":{\"name\":\"Solar Energy Materials and Solar Cells\",\"volume\":\"290 \",\"pages\":\"Article 113657\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Energy Materials and Solar Cells\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927024825002582\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825002582","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
在本研究中,对钙钛矿板在不同环境条件下的热行为进行了建模,并将模拟的工作温度与更常见的硅太阳能板的工作温度进行了比较。一个具体的需求是钙钛矿板的温度模型参数,例如,光伏功率预测模型与硅太阳能板的预测更一致。虽然钙钛矿板的工作温度受到的关注较少,但与硅器件相比,它对其稳定性的影响更大。应用的3D模型允许研究不同环境条件对商业尺寸面板的热量分布和温度的影响。结果表明,用带隙约1.6eV的典型钙钛矿吸收体代替标准晶体硅作为活性材料,可以显著降低组件正常工作时的温度:在参考条件下(环境温度20℃,风速1m/s,太阳辐照度800W/m2),钙钛矿组件的模型平均电池温度比硅组件低约7℃。该研究的新颖之处在于预测了Sandia (a=−3.77,b=−0.129),Faiman (UL0=37.93W/m2K, UL1=10.47 w /m3K), PVsyst (U0=19.29W/m2K, U1=5.27 w /m3K), Mattei (UPV=4.49v+16.65, v为风速)和TRNSYS (ULoss=4.54v+16.38)模型的钙钛矿模块特定模型参数集,这些模型通过将这些模型拟合到不同环境条件下的模拟温度数据来确定。这些参数可以用现有的光伏系统模型在不同的室外条件下估计钙钛矿板的温度。
Computational simulation of perovskite and silicon solar panel operating temperatures in varying ambient conditions
In this study, the thermal behavior of perovskite panels is modeled in different ambient conditions, and simulated operation temperatures are compared with those of more commonly studied silicon solar panels. One specific need is for temperature model parameters for perovskite panels, to make, for instance, photovoltaic power prediction models that are more consistent with those of silicon solar panels. While the operating temperature of perovskite panels has gained less attention, it impacts their stability more compared with silicon devices. The applied 3D model allows studying the effects of varying ambient conditions on the heat distribution and temperature of commercial-sized panels. The results show that replacing the standard crystalline silicon with a typical perovskite absorber of ca. band gap as the active material may significantly reduce the module temperature in normal operation: the modeled average cell temperature of the perovskite module was ca. less than that of the silicon module under reference conditions (ambient temperature , wind speed , and solar irradiance ). The novelty of the study is the predicted set of perovskite-module-specific model parameters for the Sandia (, ), Faiman (, ), PVsyst (, ), Mattei (, is the wind speed), and TRNSYS () models that were determined by fitting these models to the simulated temperature data in the varying ambient conditions. These parameters enable estimation of perovskite panel temperature in varying outdoor conditions with existing PV system models.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.