{"title":"使用机器学习和药物依从性心理因素的预测性医疗保健模型","authors":"Junwu Dong , Minyi Chu , Yirou Xu","doi":"10.1016/j.health.2025.100397","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring effective medication adherence is vital for managing chronic diseases, yet global patient adherence remains suboptimal. This study aims to develop a predictive model for medication adherence behaviour (MAB) employing machine learning techniques, addressing the limitations of traditional correlation-based approaches. Based on the Meta-Theoretic Model of Motivation and Personality (3M Model), data from 428 chronic disease patients, included dark triad traits (narcissism, Machiavellianism, psychopathy), general self-efficacy, doctor-patient trust, and demographic variables. Five machine learning algorithms – multiple logistic regression, decision tree, adaptive boosting, random forest and support vector machine (SVM) – were utilized to identify MAB levels and assess feature importance. Among these, the random forest model achieved the highest performance, with an accuracy of 0.637, recall of 0.538, precision of 0.556, and an F1 score of 0.544. Feature ranking revealed that narcissism, Machiavellianism, doctor-patient trust, psychopathy, and general self-efficacy were the most influential predictors. These findings demonstrate that integrating psychological and demographic factors into machine learning models can enhance the prediction of medication adherence. This study presents a novel interdisciplinary framework that integrates behavioural health analytics and data science to inform clinical decision-making. It provides valuable insights into the severity and temporal progression of medication adherence behaviours, offering clinicians a practical reference for developing more effective intervention strategies.</div></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"7 ","pages":"Article 100397"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A predictive healthcare model using machine learning and psychological factors for medication adherence\",\"authors\":\"Junwu Dong , Minyi Chu , Yirou Xu\",\"doi\":\"10.1016/j.health.2025.100397\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ensuring effective medication adherence is vital for managing chronic diseases, yet global patient adherence remains suboptimal. This study aims to develop a predictive model for medication adherence behaviour (MAB) employing machine learning techniques, addressing the limitations of traditional correlation-based approaches. Based on the Meta-Theoretic Model of Motivation and Personality (3M Model), data from 428 chronic disease patients, included dark triad traits (narcissism, Machiavellianism, psychopathy), general self-efficacy, doctor-patient trust, and demographic variables. Five machine learning algorithms – multiple logistic regression, decision tree, adaptive boosting, random forest and support vector machine (SVM) – were utilized to identify MAB levels and assess feature importance. Among these, the random forest model achieved the highest performance, with an accuracy of 0.637, recall of 0.538, precision of 0.556, and an F1 score of 0.544. Feature ranking revealed that narcissism, Machiavellianism, doctor-patient trust, psychopathy, and general self-efficacy were the most influential predictors. These findings demonstrate that integrating psychological and demographic factors into machine learning models can enhance the prediction of medication adherence. This study presents a novel interdisciplinary framework that integrates behavioural health analytics and data science to inform clinical decision-making. It provides valuable insights into the severity and temporal progression of medication adherence behaviours, offering clinicians a practical reference for developing more effective intervention strategies.</div></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"7 \",\"pages\":\"Article 100397\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442525000164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442525000164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A predictive healthcare model using machine learning and psychological factors for medication adherence
Ensuring effective medication adherence is vital for managing chronic diseases, yet global patient adherence remains suboptimal. This study aims to develop a predictive model for medication adherence behaviour (MAB) employing machine learning techniques, addressing the limitations of traditional correlation-based approaches. Based on the Meta-Theoretic Model of Motivation and Personality (3M Model), data from 428 chronic disease patients, included dark triad traits (narcissism, Machiavellianism, psychopathy), general self-efficacy, doctor-patient trust, and demographic variables. Five machine learning algorithms – multiple logistic regression, decision tree, adaptive boosting, random forest and support vector machine (SVM) – were utilized to identify MAB levels and assess feature importance. Among these, the random forest model achieved the highest performance, with an accuracy of 0.637, recall of 0.538, precision of 0.556, and an F1 score of 0.544. Feature ranking revealed that narcissism, Machiavellianism, doctor-patient trust, psychopathy, and general self-efficacy were the most influential predictors. These findings demonstrate that integrating psychological and demographic factors into machine learning models can enhance the prediction of medication adherence. This study presents a novel interdisciplinary framework that integrates behavioural health analytics and data science to inform clinical decision-making. It provides valuable insights into the severity and temporal progression of medication adherence behaviours, offering clinicians a practical reference for developing more effective intervention strategies.