{"title":"六氟环氧丙烷三聚酸通过破坏嗅觉功能和嗅觉介导行为诱导鲫鱼的嗅觉毒性","authors":"Shimin Zeng , Changlun Tong , Fangxing Yang","doi":"10.1016/j.aquatox.2025.107391","DOIUrl":null,"url":null,"abstract":"<div><div>Hexafluoropropylene oxide trimer acid (HFPO-TA), an emerging substitute for perfluorooctanoic acid, has been widely detected in aquatic environment and received extensive attentions of research due to its potential toxicity. However, the olfactory toxicity of HFPO-TA remains unknown yet. In the study, the effects of HFPO-TA on the olfactory epithelium (OE) and olfactory bulb (OB) were investigated in crucian carp as well as the behavioral response to olfactory stimulants. The results show that exposure to HFPO-TA inhibited the expression of genes encoding olfactory G protein-coupled receptors (GPCRs), reduced the activities of ion transporter enzymes Na<sup>+</sup>/K<sup>+</sup>-ATPase and Ca<sup>2+</sup>-ATPase, as well as the activities of superoxide dismutase (SOD) and catalase (CAT), increasing the level of malondialdehyde (MDA), inducing the activities of caspase-1 and caspase-3, and causing tissue damage in the OE of crucian carp. Similarly, exposure to HFPO-TA also induced oxidative stress and apoptosis in the OB. Moreover, the levels of neurotransmitters including 5-hydroxytryptamine (5-HT), glutamate (Glu), acetylcholine (Ach), and the appetite regulator neuropeptide Y (NPY) were depressed in the OB. The behavioral test indicates that HFPO-TA altered the preference of crucian carp for food stimulants. Therefore, HFPO-TA poses olfactory toxicity to crucian carp by disrupting olfactory function and olfactory-mediated behavior.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"284 ","pages":"Article 107391"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hexafluoropropylene oxide trimer acid induces olfactory toxicity to crucian carp by disrupting olfactory function and olfactory-mediated behavior\",\"authors\":\"Shimin Zeng , Changlun Tong , Fangxing Yang\",\"doi\":\"10.1016/j.aquatox.2025.107391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hexafluoropropylene oxide trimer acid (HFPO-TA), an emerging substitute for perfluorooctanoic acid, has been widely detected in aquatic environment and received extensive attentions of research due to its potential toxicity. However, the olfactory toxicity of HFPO-TA remains unknown yet. In the study, the effects of HFPO-TA on the olfactory epithelium (OE) and olfactory bulb (OB) were investigated in crucian carp as well as the behavioral response to olfactory stimulants. The results show that exposure to HFPO-TA inhibited the expression of genes encoding olfactory G protein-coupled receptors (GPCRs), reduced the activities of ion transporter enzymes Na<sup>+</sup>/K<sup>+</sup>-ATPase and Ca<sup>2+</sup>-ATPase, as well as the activities of superoxide dismutase (SOD) and catalase (CAT), increasing the level of malondialdehyde (MDA), inducing the activities of caspase-1 and caspase-3, and causing tissue damage in the OE of crucian carp. Similarly, exposure to HFPO-TA also induced oxidative stress and apoptosis in the OB. Moreover, the levels of neurotransmitters including 5-hydroxytryptamine (5-HT), glutamate (Glu), acetylcholine (Ach), and the appetite regulator neuropeptide Y (NPY) were depressed in the OB. The behavioral test indicates that HFPO-TA altered the preference of crucian carp for food stimulants. Therefore, HFPO-TA poses olfactory toxicity to crucian carp by disrupting olfactory function and olfactory-mediated behavior.</div></div>\",\"PeriodicalId\":248,\"journal\":{\"name\":\"Aquatic Toxicology\",\"volume\":\"284 \",\"pages\":\"Article 107391\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166445X25001560\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X25001560","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Hexafluoropropylene oxide trimer acid induces olfactory toxicity to crucian carp by disrupting olfactory function and olfactory-mediated behavior
Hexafluoropropylene oxide trimer acid (HFPO-TA), an emerging substitute for perfluorooctanoic acid, has been widely detected in aquatic environment and received extensive attentions of research due to its potential toxicity. However, the olfactory toxicity of HFPO-TA remains unknown yet. In the study, the effects of HFPO-TA on the olfactory epithelium (OE) and olfactory bulb (OB) were investigated in crucian carp as well as the behavioral response to olfactory stimulants. The results show that exposure to HFPO-TA inhibited the expression of genes encoding olfactory G protein-coupled receptors (GPCRs), reduced the activities of ion transporter enzymes Na+/K+-ATPase and Ca2+-ATPase, as well as the activities of superoxide dismutase (SOD) and catalase (CAT), increasing the level of malondialdehyde (MDA), inducing the activities of caspase-1 and caspase-3, and causing tissue damage in the OE of crucian carp. Similarly, exposure to HFPO-TA also induced oxidative stress and apoptosis in the OB. Moreover, the levels of neurotransmitters including 5-hydroxytryptamine (5-HT), glutamate (Glu), acetylcholine (Ach), and the appetite regulator neuropeptide Y (NPY) were depressed in the OB. The behavioral test indicates that HFPO-TA altered the preference of crucian carp for food stimulants. Therefore, HFPO-TA poses olfactory toxicity to crucian carp by disrupting olfactory function and olfactory-mediated behavior.
期刊介绍:
Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems.
Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants
The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.