Athanasios Chourlias , John Violos , Aris Leivadeas
{"title":"用于智能农业的虚拟传感器:支持物联网和人工智能的方法","authors":"Athanasios Chourlias , John Violos , Aris Leivadeas","doi":"10.1016/j.iot.2025.101611","DOIUrl":null,"url":null,"abstract":"<div><div>Smart farming relies on precise environmental data to optimize agricultural practices, with key metrics such as air temperature, humidity, rain, ambient light, ultraviolet (UV) radiation and soil moisture to play a crucial role in agricultural decision-making. However, the vast spatial coverage of agricultural fields and the high cost of deploying numerous physical sensors pose significant challenges, particularly for small and medium-sized farms. To address these issues, virtual sensors – machine learning models that predict sensor values based on data from relevant physical sensors – offer a cost-effective and scalable alternative. In this research, a number of Arduino-based IoT devices are designed and deployed equipped with various physical sensors, a lithium-polymer battery which recharges continuously using a 6 W waveshare solar panel, and a Real-Time Clock (RTC) module that synchronizes data logging. The IoT devices operated across two agricultural fields over a span of almost three months. The data collected form the basis for evaluating multiple machine learning models as virtual sensors. Furthermore, the use of open weather data to develop a hardware-free solution is explored. Experimental results show that virtual sensors provide a cost-effective and accurate method for replacing physical sensors. The Light Gradient Boosting Machine emerged as the most accurate model for virtual sensors, achieving prediction errors of less than 1% in most of the cases. This makes it a valuable tool for enabling cost-effective and data-driven farming in resource-constrained IoT devices.</div></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"32 ","pages":"Article 101611"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual sensors for smart farming: An IoT- and AI-enabled approach\",\"authors\":\"Athanasios Chourlias , John Violos , Aris Leivadeas\",\"doi\":\"10.1016/j.iot.2025.101611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Smart farming relies on precise environmental data to optimize agricultural practices, with key metrics such as air temperature, humidity, rain, ambient light, ultraviolet (UV) radiation and soil moisture to play a crucial role in agricultural decision-making. However, the vast spatial coverage of agricultural fields and the high cost of deploying numerous physical sensors pose significant challenges, particularly for small and medium-sized farms. To address these issues, virtual sensors – machine learning models that predict sensor values based on data from relevant physical sensors – offer a cost-effective and scalable alternative. In this research, a number of Arduino-based IoT devices are designed and deployed equipped with various physical sensors, a lithium-polymer battery which recharges continuously using a 6 W waveshare solar panel, and a Real-Time Clock (RTC) module that synchronizes data logging. The IoT devices operated across two agricultural fields over a span of almost three months. The data collected form the basis for evaluating multiple machine learning models as virtual sensors. Furthermore, the use of open weather data to develop a hardware-free solution is explored. Experimental results show that virtual sensors provide a cost-effective and accurate method for replacing physical sensors. The Light Gradient Boosting Machine emerged as the most accurate model for virtual sensors, achieving prediction errors of less than 1% in most of the cases. This makes it a valuable tool for enabling cost-effective and data-driven farming in resource-constrained IoT devices.</div></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"32 \",\"pages\":\"Article 101611\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660525001258\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660525001258","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Virtual sensors for smart farming: An IoT- and AI-enabled approach
Smart farming relies on precise environmental data to optimize agricultural practices, with key metrics such as air temperature, humidity, rain, ambient light, ultraviolet (UV) radiation and soil moisture to play a crucial role in agricultural decision-making. However, the vast spatial coverage of agricultural fields and the high cost of deploying numerous physical sensors pose significant challenges, particularly for small and medium-sized farms. To address these issues, virtual sensors – machine learning models that predict sensor values based on data from relevant physical sensors – offer a cost-effective and scalable alternative. In this research, a number of Arduino-based IoT devices are designed and deployed equipped with various physical sensors, a lithium-polymer battery which recharges continuously using a 6 W waveshare solar panel, and a Real-Time Clock (RTC) module that synchronizes data logging. The IoT devices operated across two agricultural fields over a span of almost three months. The data collected form the basis for evaluating multiple machine learning models as virtual sensors. Furthermore, the use of open weather data to develop a hardware-free solution is explored. Experimental results show that virtual sensors provide a cost-effective and accurate method for replacing physical sensors. The Light Gradient Boosting Machine emerged as the most accurate model for virtual sensors, achieving prediction errors of less than 1% in most of the cases. This makes it a valuable tool for enabling cost-effective and data-driven farming in resource-constrained IoT devices.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.