{"title":"迈向能量不敏感和稳健的中子/伽马分类:一种基于学习的频域参数方法","authors":"Pengcheng Ai, Hongtao Qin, Xiangming Sun, Kaiwen Shang","doi":"10.1016/j.net.2025.103667","DOIUrl":null,"url":null,"abstract":"<div><div>Neutron/gamma discrimination has been intensively researched in recent years, due to its unique scientific value and widespread applications. With the advancement of detection materials and algorithms, nowadays we can achieve fairly good discrimination. However, further improvements rely on better utilization of detector raw signals, especially energy-independent pulse characteristics. We begin by discussing why figure-of-merit (FoM) is not a comprehensive criterion for high-precision neutron/gamma discriminators, and proposing a new evaluation method based on adversarial sampling. Inspired by frequency-domain analysis in existing literature, parametric linear/nonlinear models with minimum complexity are created, upon the discrete spectrum, with tunable parameters just as neural networks. We train the models on an open-source neutron/gamma dataset (CLYC crystals with silicon photomultipliers) preprocessed by charge normalization to discover and exploit energy-independent features. The performance is evaluated on different sampling rates and noise levels, in comparison with the frequency classification index and conventional methods. The frequency-domain parametric models show higher accuracy and better adaptability to variations of data integrity than other discriminators. The proposed method is also promising for online inference on economical hardware and portable devices.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"57 9","pages":"Article 103667"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards energy-insensitive and robust neutron/gamma classification: A learning-based frequency-domain parametric approach\",\"authors\":\"Pengcheng Ai, Hongtao Qin, Xiangming Sun, Kaiwen Shang\",\"doi\":\"10.1016/j.net.2025.103667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Neutron/gamma discrimination has been intensively researched in recent years, due to its unique scientific value and widespread applications. With the advancement of detection materials and algorithms, nowadays we can achieve fairly good discrimination. However, further improvements rely on better utilization of detector raw signals, especially energy-independent pulse characteristics. We begin by discussing why figure-of-merit (FoM) is not a comprehensive criterion for high-precision neutron/gamma discriminators, and proposing a new evaluation method based on adversarial sampling. Inspired by frequency-domain analysis in existing literature, parametric linear/nonlinear models with minimum complexity are created, upon the discrete spectrum, with tunable parameters just as neural networks. We train the models on an open-source neutron/gamma dataset (CLYC crystals with silicon photomultipliers) preprocessed by charge normalization to discover and exploit energy-independent features. The performance is evaluated on different sampling rates and noise levels, in comparison with the frequency classification index and conventional methods. The frequency-domain parametric models show higher accuracy and better adaptability to variations of data integrity than other discriminators. The proposed method is also promising for online inference on economical hardware and portable devices.</div></div>\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":\"57 9\",\"pages\":\"Article 103667\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1738573325002359\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573325002359","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Towards energy-insensitive and robust neutron/gamma classification: A learning-based frequency-domain parametric approach
Neutron/gamma discrimination has been intensively researched in recent years, due to its unique scientific value and widespread applications. With the advancement of detection materials and algorithms, nowadays we can achieve fairly good discrimination. However, further improvements rely on better utilization of detector raw signals, especially energy-independent pulse characteristics. We begin by discussing why figure-of-merit (FoM) is not a comprehensive criterion for high-precision neutron/gamma discriminators, and proposing a new evaluation method based on adversarial sampling. Inspired by frequency-domain analysis in existing literature, parametric linear/nonlinear models with minimum complexity are created, upon the discrete spectrum, with tunable parameters just as neural networks. We train the models on an open-source neutron/gamma dataset (CLYC crystals with silicon photomultipliers) preprocessed by charge normalization to discover and exploit energy-independent features. The performance is evaluated on different sampling rates and noise levels, in comparison with the frequency classification index and conventional methods. The frequency-domain parametric models show higher accuracy and better adaptability to variations of data integrity than other discriminators. The proposed method is also promising for online inference on economical hardware and portable devices.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development