会话情境下基于扩散和转换的鲁棒多模态情绪识别

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xianxun Zhu , Yaoyang Wang , Erik Cambria , Imad Rida , José Santamaría López , Lin Cui , Rui Wang
{"title":"会话情境下基于扩散和转换的鲁棒多模态情绪识别","authors":"Xianxun Zhu ,&nbsp;Yaoyang Wang ,&nbsp;Erik Cambria ,&nbsp;Imad Rida ,&nbsp;José Santamaría López ,&nbsp;Lin Cui ,&nbsp;Rui Wang","doi":"10.1016/j.inffus.2025.103268","DOIUrl":null,"url":null,"abstract":"<div><div>As the digital age advances, multimodal emotion recognition (MER) technology is increasingly crucial in fields like smart interaction and mental health assessment. However, emotional recognition in conversational contexts faces numerous challenges, particularly in effectively managing missing multimodal data. To address this issue, we propose RMER-DT (<strong>R</strong>obust <strong>M</strong>ultimodal <strong>E</strong>motion <strong>R</strong>ecognition in Conversational Contexts based on <strong>D</strong>iffusion and <strong>T</strong>ransformers), a novel MER model specifically designed for accurate emotion recognition in conversational environments while addressing the issue of random modality absence. To improve contextual dialogue-based multimodal emotion recognition, RMER-DT introduces a novel data recovery strategy and an optimized framework. By integrating diffusion models and transformer technologies, our model effectively recovers and integrates various modal data, such as audio, facial expressions, and text. Furthermore, RMER-DT enhances the semantic interaction and representation between modalities through the introduction of positional embeddings and speaker embeddings. Experimental results on the MELD and IEMOCAP datasets demonstrate significant advantages of RMER-DT over existing technologies in handling MER tasks and enhancing the accuracy and robustness of emotion recognition.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"123 ","pages":"Article 103268"},"PeriodicalIF":14.7000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RMER-DT: Robust multimodal emotion recognition in conversational contexts based on diffusion and transformers\",\"authors\":\"Xianxun Zhu ,&nbsp;Yaoyang Wang ,&nbsp;Erik Cambria ,&nbsp;Imad Rida ,&nbsp;José Santamaría López ,&nbsp;Lin Cui ,&nbsp;Rui Wang\",\"doi\":\"10.1016/j.inffus.2025.103268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As the digital age advances, multimodal emotion recognition (MER) technology is increasingly crucial in fields like smart interaction and mental health assessment. However, emotional recognition in conversational contexts faces numerous challenges, particularly in effectively managing missing multimodal data. To address this issue, we propose RMER-DT (<strong>R</strong>obust <strong>M</strong>ultimodal <strong>E</strong>motion <strong>R</strong>ecognition in Conversational Contexts based on <strong>D</strong>iffusion and <strong>T</strong>ransformers), a novel MER model specifically designed for accurate emotion recognition in conversational environments while addressing the issue of random modality absence. To improve contextual dialogue-based multimodal emotion recognition, RMER-DT introduces a novel data recovery strategy and an optimized framework. By integrating diffusion models and transformer technologies, our model effectively recovers and integrates various modal data, such as audio, facial expressions, and text. Furthermore, RMER-DT enhances the semantic interaction and representation between modalities through the introduction of positional embeddings and speaker embeddings. Experimental results on the MELD and IEMOCAP datasets demonstrate significant advantages of RMER-DT over existing technologies in handling MER tasks and enhancing the accuracy and robustness of emotion recognition.</div></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"123 \",\"pages\":\"Article 103268\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253525003410\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525003410","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着数字时代的发展,多模态情绪识别技术在智能交互和心理健康评估等领域发挥着越来越重要的作用。然而,会话环境中的情感识别面临着许多挑战,特别是在有效管理缺失的多模态数据方面。为了解决这个问题,我们提出了RMER-DT(基于扩散和变形的会话上下文中的鲁棒多模态情感识别),这是一种新颖的MER模型,专门用于在会话环境中准确识别情感,同时解决随机模态缺失的问题。为了改进基于上下文对话的多模态情感识别,RMER-DT引入了一种新的数据恢复策略和优化框架。通过整合扩散模型和变压器技术,我们的模型有效地恢复和整合了各种模态数据,如音频、面部表情和文本。此外,RMER-DT通过引入位置嵌入和说话人嵌入来增强模态之间的语义交互和表征。在MELD和IEMOCAP数据集上的实验结果表明,与现有技术相比,RMER-DT在处理MER任务和提高情绪识别的准确性和鲁棒性方面具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RMER-DT: Robust multimodal emotion recognition in conversational contexts based on diffusion and transformers
As the digital age advances, multimodal emotion recognition (MER) technology is increasingly crucial in fields like smart interaction and mental health assessment. However, emotional recognition in conversational contexts faces numerous challenges, particularly in effectively managing missing multimodal data. To address this issue, we propose RMER-DT (Robust Multimodal Emotion Recognition in Conversational Contexts based on Diffusion and Transformers), a novel MER model specifically designed for accurate emotion recognition in conversational environments while addressing the issue of random modality absence. To improve contextual dialogue-based multimodal emotion recognition, RMER-DT introduces a novel data recovery strategy and an optimized framework. By integrating diffusion models and transformer technologies, our model effectively recovers and integrates various modal data, such as audio, facial expressions, and text. Furthermore, RMER-DT enhances the semantic interaction and representation between modalities through the introduction of positional embeddings and speaker embeddings. Experimental results on the MELD and IEMOCAP datasets demonstrate significant advantages of RMER-DT over existing technologies in handling MER tasks and enhancing the accuracy and robustness of emotion recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信