{"title":"分模块估值的高效率和有效的预算可行机制","authors":"Kai Han , Haotian Zhang , Shuang Cui","doi":"10.1016/j.artint.2025.104348","DOIUrl":null,"url":null,"abstract":"<div><div>We revisit the classical problem of designing Budget-Feasible Mechanisms (BFMs) for submodular valuation functions, which has been extensively studied since the seminal paper of Singer [FOCS'10] due to their wide applications in crowdsourcing and social marketing. We propose <span><math><mi>TripleEagle</mi></math></span>, a novel algorithmic framework for designing BFMs, based on which we present several simple yet effective BFMs that achieve better approximation ratios than the state-of-the-art work. Moreover, our BFMs are the first in the literature to achieve linear query complexity under the value oracle model while ensuring obvious strategyproofness, making them more practical than the previous BFMs. We conduct extensive experiments to evaluate the empirical performance of our BFMs, and the experimental results demonstrate the superiorities of our approach in terms of efficiency and effectiveness compared to the state-of-the-art BFMs.</div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"345 ","pages":"Article 104348"},"PeriodicalIF":4.6000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and effective budget-feasible mechanisms for submodular valuations\",\"authors\":\"Kai Han , Haotian Zhang , Shuang Cui\",\"doi\":\"10.1016/j.artint.2025.104348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We revisit the classical problem of designing Budget-Feasible Mechanisms (BFMs) for submodular valuation functions, which has been extensively studied since the seminal paper of Singer [FOCS'10] due to their wide applications in crowdsourcing and social marketing. We propose <span><math><mi>TripleEagle</mi></math></span>, a novel algorithmic framework for designing BFMs, based on which we present several simple yet effective BFMs that achieve better approximation ratios than the state-of-the-art work. Moreover, our BFMs are the first in the literature to achieve linear query complexity under the value oracle model while ensuring obvious strategyproofness, making them more practical than the previous BFMs. We conduct extensive experiments to evaluate the empirical performance of our BFMs, and the experimental results demonstrate the superiorities of our approach in terms of efficiency and effectiveness compared to the state-of-the-art BFMs.</div></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"345 \",\"pages\":\"Article 104348\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370225000670\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370225000670","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Efficient and effective budget-feasible mechanisms for submodular valuations
We revisit the classical problem of designing Budget-Feasible Mechanisms (BFMs) for submodular valuation functions, which has been extensively studied since the seminal paper of Singer [FOCS'10] due to their wide applications in crowdsourcing and social marketing. We propose , a novel algorithmic framework for designing BFMs, based on which we present several simple yet effective BFMs that achieve better approximation ratios than the state-of-the-art work. Moreover, our BFMs are the first in the literature to achieve linear query complexity under the value oracle model while ensuring obvious strategyproofness, making them more practical than the previous BFMs. We conduct extensive experiments to evaluate the empirical performance of our BFMs, and the experimental results demonstrate the superiorities of our approach in terms of efficiency and effectiveness compared to the state-of-the-art BFMs.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.