Kun Fang , Pei Li , Xiangrui Huang , Hanbing Wang , Yihan Li , Dongyang Zhu , Bo Luo
{"title":"磁性淀粉基生物医学复合材料的研究进展","authors":"Kun Fang , Pei Li , Xiangrui Huang , Hanbing Wang , Yihan Li , Dongyang Zhu , Bo Luo","doi":"10.1016/j.carbpol.2025.123689","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing demand for biomedical materials to address various diseases has highlighted the need for advanced biocompatible materials with improved biofunctionality for smart diagnostics and clinical therapies. Starch, a natural polymer, is an ideal starting material for the development of multifunctional biomedical materials due to its biocompatibility, low toxicity, and biodegradability. However, native starch lacks certain properties, particularly magnetic properties. By strategically modifying the structure of starch or its derivatives and incorporating different types of magnetic nanoparticles (MNPs), magnetic starch-based composites (MSBCs) can be developed. These composites take the advantages of both the magnetic materials and natural polysaccharides, enhancing the mechanical strength of starch and imparting additional properties, such as magneto-thermal effects, targeting ability, stimulus-responsive drug delivery, and easy separation. As a result, MSBCs have widespread applications in fields such as wound dressing and magneto-thermal therapy. This review highlights the types of MSBCs, their synthesis methods, and their current applications in biomedicine. Additionally, this review describes the major challenges faced by MSBCs in biomedical applications and provides an outlook on their potential for further development. This review aims to improve the understanding of magnetic starches and optimize their synthetic strategies, positioning MSBCs as promising platforms for biomedical applications.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"362 ","pages":"Article 123689"},"PeriodicalIF":10.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advancements in magnetic starch-based composites for biomedical applications: A review\",\"authors\":\"Kun Fang , Pei Li , Xiangrui Huang , Hanbing Wang , Yihan Li , Dongyang Zhu , Bo Luo\",\"doi\":\"10.1016/j.carbpol.2025.123689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing demand for biomedical materials to address various diseases has highlighted the need for advanced biocompatible materials with improved biofunctionality for smart diagnostics and clinical therapies. Starch, a natural polymer, is an ideal starting material for the development of multifunctional biomedical materials due to its biocompatibility, low toxicity, and biodegradability. However, native starch lacks certain properties, particularly magnetic properties. By strategically modifying the structure of starch or its derivatives and incorporating different types of magnetic nanoparticles (MNPs), magnetic starch-based composites (MSBCs) can be developed. These composites take the advantages of both the magnetic materials and natural polysaccharides, enhancing the mechanical strength of starch and imparting additional properties, such as magneto-thermal effects, targeting ability, stimulus-responsive drug delivery, and easy separation. As a result, MSBCs have widespread applications in fields such as wound dressing and magneto-thermal therapy. This review highlights the types of MSBCs, their synthesis methods, and their current applications in biomedicine. Additionally, this review describes the major challenges faced by MSBCs in biomedical applications and provides an outlook on their potential for further development. This review aims to improve the understanding of magnetic starches and optimize their synthetic strategies, positioning MSBCs as promising platforms for biomedical applications.</div></div>\",\"PeriodicalId\":261,\"journal\":{\"name\":\"Carbohydrate Polymers\",\"volume\":\"362 \",\"pages\":\"Article 123689\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbohydrate Polymers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0144861725004710\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725004710","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Recent advancements in magnetic starch-based composites for biomedical applications: A review
The increasing demand for biomedical materials to address various diseases has highlighted the need for advanced biocompatible materials with improved biofunctionality for smart diagnostics and clinical therapies. Starch, a natural polymer, is an ideal starting material for the development of multifunctional biomedical materials due to its biocompatibility, low toxicity, and biodegradability. However, native starch lacks certain properties, particularly magnetic properties. By strategically modifying the structure of starch or its derivatives and incorporating different types of magnetic nanoparticles (MNPs), magnetic starch-based composites (MSBCs) can be developed. These composites take the advantages of both the magnetic materials and natural polysaccharides, enhancing the mechanical strength of starch and imparting additional properties, such as magneto-thermal effects, targeting ability, stimulus-responsive drug delivery, and easy separation. As a result, MSBCs have widespread applications in fields such as wound dressing and magneto-thermal therapy. This review highlights the types of MSBCs, their synthesis methods, and their current applications in biomedicine. Additionally, this review describes the major challenges faced by MSBCs in biomedical applications and provides an outlook on their potential for further development. This review aims to improve the understanding of magnetic starches and optimize their synthetic strategies, positioning MSBCs as promising platforms for biomedical applications.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.