基于ceo2功能化碳纳米管的高稳定性PtPd合金的甲醇氧化研究

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peng Guo, HongWei Li*, Boyu Huang, Weiping Li, Rong Liu, Dong Ji, GuiXian Li and XinHong Zhao*, 
{"title":"基于ceo2功能化碳纳米管的高稳定性PtPd合金的甲醇氧化研究","authors":"Peng Guo,&nbsp;HongWei Li*,&nbsp;Boyu Huang,&nbsp;Weiping Li,&nbsp;Rong Liu,&nbsp;Dong Ji,&nbsp;GuiXian Li and XinHong Zhao*,&nbsp;","doi":"10.1021/acsanm.5c0093010.1021/acsanm.5c00930","DOIUrl":null,"url":null,"abstract":"<p >Methanol has gained prominence as a carbon-neutral energy vector due to its remarkable energy density and versatile electrochemical conversion capabilities. Nevertheless, the practical implementation of methanol oxidation reaction (MOR) technologies faces a critical bottleneck in developing durable precious-metal-based catalysts that maintain structural integrity under operational conditions. Herein, we engineer a heterostructured electrocatalyst through precise surface composition tuning of Pt–Pd alloys coupled with CeO<sub>2</sub> functionalization, establishing an optimized synergy between compositional engineering and support interactions. The strategically designed Pt–Pd bimetallic nanoparticles, homogeneously dispersed on a CeO<sub>2</sub>-decorated carbon nanotube, demonstrate exceptional alkaline methanol oxidation performance with a record mass activity of 5600.0 mA·mg<sub>metal</sub><sup>–1</sup> accompanied by outstanding operational stability (1810.2 mA·mg<sub>metal</sub><sup>–1</sup> retention after 7200 s). Multidisciplinary characterization reveals that the synergistic effects at the PtPd/CeO<sub>2</sub>–CNT interfaces facilitate optimized CH<sub>3</sub>OH adsorption and preferentially activate the CO-tolerant reaction pathway. This work establishes a generalizable paradigm for developing poisoning-resistant alloy catalysts through rational interfacial engineering in hybrid support systems, paving the way for practical methanol fuel cell applications.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 18","pages":"9437–9447 9437–9447"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Highly Stable PtPd Alloy Supported on CeO2-Functionalized Carbon Nanotubes for Methanol Oxidation\",\"authors\":\"Peng Guo,&nbsp;HongWei Li*,&nbsp;Boyu Huang,&nbsp;Weiping Li,&nbsp;Rong Liu,&nbsp;Dong Ji,&nbsp;GuiXian Li and XinHong Zhao*,&nbsp;\",\"doi\":\"10.1021/acsanm.5c0093010.1021/acsanm.5c00930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Methanol has gained prominence as a carbon-neutral energy vector due to its remarkable energy density and versatile electrochemical conversion capabilities. Nevertheless, the practical implementation of methanol oxidation reaction (MOR) technologies faces a critical bottleneck in developing durable precious-metal-based catalysts that maintain structural integrity under operational conditions. Herein, we engineer a heterostructured electrocatalyst through precise surface composition tuning of Pt–Pd alloys coupled with CeO<sub>2</sub> functionalization, establishing an optimized synergy between compositional engineering and support interactions. The strategically designed Pt–Pd bimetallic nanoparticles, homogeneously dispersed on a CeO<sub>2</sub>-decorated carbon nanotube, demonstrate exceptional alkaline methanol oxidation performance with a record mass activity of 5600.0 mA·mg<sub>metal</sub><sup>–1</sup> accompanied by outstanding operational stability (1810.2 mA·mg<sub>metal</sub><sup>–1</sup> retention after 7200 s). Multidisciplinary characterization reveals that the synergistic effects at the PtPd/CeO<sub>2</sub>–CNT interfaces facilitate optimized CH<sub>3</sub>OH adsorption and preferentially activate the CO-tolerant reaction pathway. This work establishes a generalizable paradigm for developing poisoning-resistant alloy catalysts through rational interfacial engineering in hybrid support systems, paving the way for practical methanol fuel cell applications.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 18\",\"pages\":\"9437–9447 9437–9447\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c00930\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c00930","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

甲醇因其显著的能量密度和通用的电化学转化能力而成为碳中性能量载体。然而,甲醇氧化反应(MOR)技术的实际实施面临一个关键瓶颈,即开发耐用的贵金属基催化剂,在操作条件下保持结构完整性。本研究通过精确调整Pt-Pd合金的表面组成,结合CeO2功能化,设计了一种异质结构电催化剂,在组成工程和载体相互作用之间建立了优化的协同作用。精心设计的Pt-Pd双金属纳米颗粒均匀分散在ceo2修饰的碳纳米管上,表现出优异的碱性甲醇氧化性能,其质量活性达到5600.0 mA·mgmetal-1,并具有出色的操作稳定性(7200 s后保持1810.2 mA·mgmetal-1)。多学科表征表明,PtPd/ CeO2-CNT界面的协同效应有助于优化CH3OH吸附,并优先激活co耐受反应途径。本研究为在混合支撑系统中通过合理的界面工程开发耐中毒合金催化剂建立了一个可推广的范例,为实际甲醇燃料电池的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Highly Stable PtPd Alloy Supported on CeO2-Functionalized Carbon Nanotubes for Methanol Oxidation

A Highly Stable PtPd Alloy Supported on CeO2-Functionalized Carbon Nanotubes for Methanol Oxidation

Methanol has gained prominence as a carbon-neutral energy vector due to its remarkable energy density and versatile electrochemical conversion capabilities. Nevertheless, the practical implementation of methanol oxidation reaction (MOR) technologies faces a critical bottleneck in developing durable precious-metal-based catalysts that maintain structural integrity under operational conditions. Herein, we engineer a heterostructured electrocatalyst through precise surface composition tuning of Pt–Pd alloys coupled with CeO2 functionalization, establishing an optimized synergy between compositional engineering and support interactions. The strategically designed Pt–Pd bimetallic nanoparticles, homogeneously dispersed on a CeO2-decorated carbon nanotube, demonstrate exceptional alkaline methanol oxidation performance with a record mass activity of 5600.0 mA·mgmetal–1 accompanied by outstanding operational stability (1810.2 mA·mgmetal–1 retention after 7200 s). Multidisciplinary characterization reveals that the synergistic effects at the PtPd/CeO2–CNT interfaces facilitate optimized CH3OH adsorption and preferentially activate the CO-tolerant reaction pathway. This work establishes a generalizable paradigm for developing poisoning-resistant alloy catalysts through rational interfacial engineering in hybrid support systems, paving the way for practical methanol fuel cell applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信