泡沫镍负载的海胆状中熵氢氧化氧FeCoNiOOH纳米颗粒用于海水氧化

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ruotong Song, Yuanyuan Ma*, Mingyuan Shi, Zhifang Li, Wanting Liu, Wenbo Ma, Chunling Zuo, Hao Zhang, Zheng Nan and Yuhang Sun, 
{"title":"泡沫镍负载的海胆状中熵氢氧化氧FeCoNiOOH纳米颗粒用于海水氧化","authors":"Ruotong Song,&nbsp;Yuanyuan Ma*,&nbsp;Mingyuan Shi,&nbsp;Zhifang Li,&nbsp;Wanting Liu,&nbsp;Wenbo Ma,&nbsp;Chunling Zuo,&nbsp;Hao Zhang,&nbsp;Zheng Nan and Yuhang Sun,&nbsp;","doi":"10.1021/acsanm.5c0152710.1021/acsanm.5c01527","DOIUrl":null,"url":null,"abstract":"<p >Developing electrocatalysts with exceptional efficiency and remarkable corrosion resistance for seawater electrolysis presents a significant challenge. Here, an urchin-like medium-entropy Fe–Co–Ni oxyhydroxide on nickel foam (NF) exhibits high surface area, rich active sites, and a short charge diffusion path to enhance oxygen evolution reaction (OER) activity. In 1 M KOH, 1 M KOH + 0.5 M NaCl, 1 M KOH + 1 M NaCl, and 1 M KOH + seawater electrolyte, FeCoNiOOH/NF exhibits exceptional OER performance, featuring impressively low overpotentials (η<sub>10</sub>) of 182, 195, 205, and 216 mV, respectively. Furthermore, FeCoNiOOH/NF displays remarkable stability in alkaline freshwater and seawater at 100 mA cm<sup>–2</sup> for over 25 h. In situ Raman measurements demonstrate that NiOOH is the key active component in the OER process. This study provides an avenue to design medium-entropy oxyhydroxide catalysts for seawater splitting.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 18","pages":"9555–9564 9555–9564"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urchin-like Medium-Entropy Oxyhydroxide FeCoNiOOH Nanoparticles Supported on Nickel Foam for Seawater Oxidation\",\"authors\":\"Ruotong Song,&nbsp;Yuanyuan Ma*,&nbsp;Mingyuan Shi,&nbsp;Zhifang Li,&nbsp;Wanting Liu,&nbsp;Wenbo Ma,&nbsp;Chunling Zuo,&nbsp;Hao Zhang,&nbsp;Zheng Nan and Yuhang Sun,&nbsp;\",\"doi\":\"10.1021/acsanm.5c0152710.1021/acsanm.5c01527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing electrocatalysts with exceptional efficiency and remarkable corrosion resistance for seawater electrolysis presents a significant challenge. Here, an urchin-like medium-entropy Fe–Co–Ni oxyhydroxide on nickel foam (NF) exhibits high surface area, rich active sites, and a short charge diffusion path to enhance oxygen evolution reaction (OER) activity. In 1 M KOH, 1 M KOH + 0.5 M NaCl, 1 M KOH + 1 M NaCl, and 1 M KOH + seawater electrolyte, FeCoNiOOH/NF exhibits exceptional OER performance, featuring impressively low overpotentials (η<sub>10</sub>) of 182, 195, 205, and 216 mV, respectively. Furthermore, FeCoNiOOH/NF displays remarkable stability in alkaline freshwater and seawater at 100 mA cm<sup>–2</sup> for over 25 h. In situ Raman measurements demonstrate that NiOOH is the key active component in the OER process. This study provides an avenue to design medium-entropy oxyhydroxide catalysts for seawater splitting.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 18\",\"pages\":\"9555–9564 9555–9564\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.5c01527\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.5c01527","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高效、耐腐蚀的海水电解电催化剂是一项重大挑战。在泡沫镍(NF)表面形成一种类似海胆的中熵Fe-Co-Ni氢氧化物,具有高表面积、丰富的活性位点和短的电荷扩散路径,从而增强了析氧反应(OER)活性。在1 M KOH、1 M KOH + 0.5 M NaCl、1 M KOH + 1 M NaCl和1 M KOH +海水电解质中,FeCoNiOOH/NF表现出优异的OER性能,其过电位(η10)分别为182、195、205和216 mV。此外,FeCoNiOOH/NF在100 mA cm-2的碱性淡水和海水中表现出卓越的稳定性,持续时间超过25小时。原位拉曼测量表明,NiOOH是OER过程中的关键活性成分。本研究为海水裂解中熵氢氧催化剂的设计提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Urchin-like Medium-Entropy Oxyhydroxide FeCoNiOOH Nanoparticles Supported on Nickel Foam for Seawater Oxidation

Urchin-like Medium-Entropy Oxyhydroxide FeCoNiOOH Nanoparticles Supported on Nickel Foam for Seawater Oxidation

Developing electrocatalysts with exceptional efficiency and remarkable corrosion resistance for seawater electrolysis presents a significant challenge. Here, an urchin-like medium-entropy Fe–Co–Ni oxyhydroxide on nickel foam (NF) exhibits high surface area, rich active sites, and a short charge diffusion path to enhance oxygen evolution reaction (OER) activity. In 1 M KOH, 1 M KOH + 0.5 M NaCl, 1 M KOH + 1 M NaCl, and 1 M KOH + seawater electrolyte, FeCoNiOOH/NF exhibits exceptional OER performance, featuring impressively low overpotentials (η10) of 182, 195, 205, and 216 mV, respectively. Furthermore, FeCoNiOOH/NF displays remarkable stability in alkaline freshwater and seawater at 100 mA cm–2 for over 25 h. In situ Raman measurements demonstrate that NiOOH is the key active component in the OER process. This study provides an avenue to design medium-entropy oxyhydroxide catalysts for seawater splitting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信