{"title":"电极|聚合物电解质界面的非均质性会导致电池失效","authors":"","doi":"10.1038/s41565-025-01886-4","DOIUrl":null,"url":null,"abstract":"The interfacial dynamics in high-potential lithium batteries with polymer electrolytes have been challenging to characterize. Now, X-ray synchrotron analyses reveal that the rearrangement of ion-conductive phases in polymer electrolytes at electrode|electrolyte interfaces disrupts ionically conductive paths and contributes to battery performance degradation.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"18 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterogeneities across electrode|polymer electrolyte interfaces contribute to battery failure\",\"authors\":\"\",\"doi\":\"10.1038/s41565-025-01886-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interfacial dynamics in high-potential lithium batteries with polymer electrolytes have been challenging to characterize. Now, X-ray synchrotron analyses reveal that the rearrangement of ion-conductive phases in polymer electrolytes at electrode|electrolyte interfaces disrupts ionically conductive paths and contributes to battery performance degradation.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41565-025-01886-4\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01886-4","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Heterogeneities across electrode|polymer electrolyte interfaces contribute to battery failure
The interfacial dynamics in high-potential lithium batteries with polymer electrolytes have been challenging to characterize. Now, X-ray synchrotron analyses reveal that the rearrangement of ion-conductive phases in polymer electrolytes at electrode|electrolyte interfaces disrupts ionically conductive paths and contributes to battery performance degradation.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.