盐水中氯的直接电合成与分离平台

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Jianan Gao, Qingquan Ma, Yihan Zhang, Shan Xue, Guangyu Guo, Bingcai Pan, Han-Qing Yu, Wen Zhang
{"title":"盐水中氯的直接电合成与分离平台","authors":"Jianan Gao, Qingquan Ma, Yihan Zhang, Shan Xue, Guangyu Guo, Bingcai Pan, Han-Qing Yu, Wen Zhang","doi":"10.1021/acs.est.5c02676","DOIUrl":null,"url":null,"abstract":"Electrosynthesis of chlorine (Cl<sub>2</sub>) from seawater and natural and industrial brines emerges as a transformative approach for wastewater valorization while achieving water purification. However, the effective separation of chlorine from complex saline mixtures and the mitigation of environmental impacts from chlorine derivatives are two critical challenges to tackle. Here, we report a scalable electrosynthesis platform capable of producing and separating chlorine directly at a single three-phase interface, achieving up to 97% selectivity and nearly 100% separation efficiency. Employing a three-stacked modular electrolyzer, we successfully generated sodium hypochlorite solutions at concentrations of 0.53 and 5.1 wt % from real reverse osmosis retentate and seawater. The treated brine discharge met the stringent environmental standards for chlorine-based contaminants. Compared to ion exchange and electrodialysis, this upcycling and separation process has the potential to advance decentralized chlor-alkali production and nonpotable water generation. Additionally, it can be seamlessly integrated with direct or indirect electrochemical impure water splitting, eliminating low-value oxygen production, reducing the need for alkali additives, and addressing safety concerns such as hydrogen/oxygen crossover.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"13 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct Electrosynthesis and Separation Platform for Chlorine from Saline Water\",\"authors\":\"Jianan Gao, Qingquan Ma, Yihan Zhang, Shan Xue, Guangyu Guo, Bingcai Pan, Han-Qing Yu, Wen Zhang\",\"doi\":\"10.1021/acs.est.5c02676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrosynthesis of chlorine (Cl<sub>2</sub>) from seawater and natural and industrial brines emerges as a transformative approach for wastewater valorization while achieving water purification. However, the effective separation of chlorine from complex saline mixtures and the mitigation of environmental impacts from chlorine derivatives are two critical challenges to tackle. Here, we report a scalable electrosynthesis platform capable of producing and separating chlorine directly at a single three-phase interface, achieving up to 97% selectivity and nearly 100% separation efficiency. Employing a three-stacked modular electrolyzer, we successfully generated sodium hypochlorite solutions at concentrations of 0.53 and 5.1 wt % from real reverse osmosis retentate and seawater. The treated brine discharge met the stringent environmental standards for chlorine-based contaminants. Compared to ion exchange and electrodialysis, this upcycling and separation process has the potential to advance decentralized chlor-alkali production and nonpotable water generation. Additionally, it can be seamlessly integrated with direct or indirect electrochemical impure water splitting, eliminating low-value oxygen production, reducing the need for alkali additives, and addressing safety concerns such as hydrogen/oxygen crossover.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.5c02676\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.5c02676","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

从海水、天然盐水和工业盐水中电合成氯(Cl2)是一种变革性的方法,可以在实现水净化的同时实现废水的增值。然而,从复杂盐水混合物中有效分离氯和减轻氯衍生物对环境的影响是需要解决的两个关键挑战。在这里,我们报告了一个可扩展的电合成平台,能够在单个三相界面直接产生和分离氯,实现高达97%的选择性和近100%的分离效率。采用三叠式模块化电解槽,我们成功地从真正的反渗透滞留物和海水中生成了浓度为0.53和5.1%的次氯酸钠溶液。处理后的卤水排放符合严格的氯基污染物环境标准。与离子交换和电渗析相比,这种升级回收和分离工艺有可能促进分散氯碱生产和非饮用水生产。此外,它还可以与直接或间接的电化学不纯水分解无缝集成,消除低价值氧气的产生,减少对碱添加剂的需求,并解决氢/氧交叉等安全问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Direct Electrosynthesis and Separation Platform for Chlorine from Saline Water

Direct Electrosynthesis and Separation Platform for Chlorine from Saline Water
Electrosynthesis of chlorine (Cl2) from seawater and natural and industrial brines emerges as a transformative approach for wastewater valorization while achieving water purification. However, the effective separation of chlorine from complex saline mixtures and the mitigation of environmental impacts from chlorine derivatives are two critical challenges to tackle. Here, we report a scalable electrosynthesis platform capable of producing and separating chlorine directly at a single three-phase interface, achieving up to 97% selectivity and nearly 100% separation efficiency. Employing a three-stacked modular electrolyzer, we successfully generated sodium hypochlorite solutions at concentrations of 0.53 and 5.1 wt % from real reverse osmosis retentate and seawater. The treated brine discharge met the stringent environmental standards for chlorine-based contaminants. Compared to ion exchange and electrodialysis, this upcycling and separation process has the potential to advance decentralized chlor-alkali production and nonpotable water generation. Additionally, it can be seamlessly integrated with direct or indirect electrochemical impure water splitting, eliminating low-value oxygen production, reducing the need for alkali additives, and addressing safety concerns such as hydrogen/oxygen crossover.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信