纳米沸石驱动齿轮催化实现甲醇-芳烃顺序转化

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-07 DOI:10.1021/acsnano.5c00673
Zhizheng Sheng, Jian Zhou, Yangdong Wang, Wenhua Fu, Ke Du, Weihua Wang, Kaiqi Nie, Jianqi Hao, Yahong Zhang, Binhang Yan, Wei Fan, Jiawei Teng, Zaiku Xie
{"title":"纳米沸石驱动齿轮催化实现甲醇-芳烃顺序转化","authors":"Zhizheng Sheng, Jian Zhou, Yangdong Wang, Wenhua Fu, Ke Du, Weihua Wang, Kaiqi Nie, Jianqi Hao, Yahong Zhang, Binhang Yan, Wei Fan, Jiawei Teng, Zaiku Xie","doi":"10.1021/acsnano.5c00673","DOIUrl":null,"url":null,"abstract":"Controlling diffusion and elementary reaction pathways to achieve high selectivity and stability has been a long-standing challenge in heterogeneous catalysis. Here, we develop a “gear-catalyst” system that spatially and kinetically decouples the methanol-to-aromatics (MTA) reaction into two sequential steps: methanol-to-olefins and olefins-to-aromatics. We show that nanoZSM-5 (high Si/Al ratio, ∼100 nm particle size) serves as a highly efficient smaller “gear” for rapid olefin generation and accelerated mass transfer, while micrometer-sized Zn-exchanged ZSM-5 (Zn/Z5) acts as the larger “gear” to promote aromatization. This gear-like synergy enables precise control of both reaction kinetics and diffusion pathways, reducing undesired overalkylation and coke formation. Consequently, our catalyst delivers a remarkable increase in aromatic yield with an 85% selectivity for benzene, toluene, and xylene in a single pass. In situ spectroscopic studies reveal that the smaller nanoZSM-5 particles modulate local olefin concentrations and prevent early aromatic buildup, thereby extending catalyst lifetimes by suppressing hard-coke formation. The resulting “two-center” mechanism, in which olefins shuttle between adjacent acid and metal sites, demonstrates how a simple physical mixing strategy can decouple complex multistep pathways. Our findings underscore the potential of gear-catalysis concepts to tackle similar diffusion-reaction mismatches in high-value chemical transformations, from syngas-to-aromatics to CO<sub>2</sub>-based fuel synthesis.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"48 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanozeolite-Driven Gear-Catalysis Enabling Sequential Methanol-to-Aromatics Conversion\",\"authors\":\"Zhizheng Sheng, Jian Zhou, Yangdong Wang, Wenhua Fu, Ke Du, Weihua Wang, Kaiqi Nie, Jianqi Hao, Yahong Zhang, Binhang Yan, Wei Fan, Jiawei Teng, Zaiku Xie\",\"doi\":\"10.1021/acsnano.5c00673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Controlling diffusion and elementary reaction pathways to achieve high selectivity and stability has been a long-standing challenge in heterogeneous catalysis. Here, we develop a “gear-catalyst” system that spatially and kinetically decouples the methanol-to-aromatics (MTA) reaction into two sequential steps: methanol-to-olefins and olefins-to-aromatics. We show that nanoZSM-5 (high Si/Al ratio, ∼100 nm particle size) serves as a highly efficient smaller “gear” for rapid olefin generation and accelerated mass transfer, while micrometer-sized Zn-exchanged ZSM-5 (Zn/Z5) acts as the larger “gear” to promote aromatization. This gear-like synergy enables precise control of both reaction kinetics and diffusion pathways, reducing undesired overalkylation and coke formation. Consequently, our catalyst delivers a remarkable increase in aromatic yield with an 85% selectivity for benzene, toluene, and xylene in a single pass. In situ spectroscopic studies reveal that the smaller nanoZSM-5 particles modulate local olefin concentrations and prevent early aromatic buildup, thereby extending catalyst lifetimes by suppressing hard-coke formation. The resulting “two-center” mechanism, in which olefins shuttle between adjacent acid and metal sites, demonstrates how a simple physical mixing strategy can decouple complex multistep pathways. Our findings underscore the potential of gear-catalysis concepts to tackle similar diffusion-reaction mismatches in high-value chemical transformations, from syngas-to-aromatics to CO<sub>2</sub>-based fuel synthesis.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c00673\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c00673","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

控制扩散和基本反应途径以达到高选择性和稳定性一直是多相催化领域的挑战。在这里,我们开发了一个“齿轮催化剂”系统,该系统将甲醇制芳烃(MTA)反应在空间和动力学上解耦为两个连续的步骤:甲醇制烯烃和烯烃制芳烃。研究表明,纳米ZSM-5(高Si/Al比,约100 nm粒径)是快速生成烯烃和加速传质的高效小“齿轮”,而微米尺寸的锌交换ZSM-5 (Zn/Z5)则是促进芳构化的大“齿轮”。这种齿轮般的协同作用使反应动力学和扩散途径的精确控制,减少不必要的过烷基化和焦炭的形成。因此,我们的催化剂提供了显着提高芳香产率,苯,甲苯和二甲苯的选择性为85%。原位光谱研究表明,较小的纳米zsm -5颗粒调节了局部烯烃浓度,防止了早期芳烃的形成,从而通过抑制硬焦的形成延长了催化剂的寿命。由此产生的“双中心”机制,即烯烃在相邻的酸和金属位点之间穿梭,证明了简单的物理混合策略如何解耦复杂的多步骤途径。我们的发现强调了齿轮催化概念在解决高价值化学转化(从合成气到芳烃到基于二氧化碳的燃料合成)中类似扩散反应不匹配的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nanozeolite-Driven Gear-Catalysis Enabling Sequential Methanol-to-Aromatics Conversion

Nanozeolite-Driven Gear-Catalysis Enabling Sequential Methanol-to-Aromatics Conversion
Controlling diffusion and elementary reaction pathways to achieve high selectivity and stability has been a long-standing challenge in heterogeneous catalysis. Here, we develop a “gear-catalyst” system that spatially and kinetically decouples the methanol-to-aromatics (MTA) reaction into two sequential steps: methanol-to-olefins and olefins-to-aromatics. We show that nanoZSM-5 (high Si/Al ratio, ∼100 nm particle size) serves as a highly efficient smaller “gear” for rapid olefin generation and accelerated mass transfer, while micrometer-sized Zn-exchanged ZSM-5 (Zn/Z5) acts as the larger “gear” to promote aromatization. This gear-like synergy enables precise control of both reaction kinetics and diffusion pathways, reducing undesired overalkylation and coke formation. Consequently, our catalyst delivers a remarkable increase in aromatic yield with an 85% selectivity for benzene, toluene, and xylene in a single pass. In situ spectroscopic studies reveal that the smaller nanoZSM-5 particles modulate local olefin concentrations and prevent early aromatic buildup, thereby extending catalyst lifetimes by suppressing hard-coke formation. The resulting “two-center” mechanism, in which olefins shuttle between adjacent acid and metal sites, demonstrates how a simple physical mixing strategy can decouple complex multistep pathways. Our findings underscore the potential of gear-catalysis concepts to tackle similar diffusion-reaction mismatches in high-value chemical transformations, from syngas-to-aromatics to CO2-based fuel synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信