晶格压缩驱动的电子定位和Ir-O耦合协同实现超低过电位锂- co2电池

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jiyuan Xiao, Limin Liu, Shuyang Ren, Menghang Sun, Bo Wen, Song Xue, Shuai Yang, Xiaofeng Liu, Ning Zhao, Xiaofei Hu, Prof. Shujiang Ding, Prof. Guorui Yang
{"title":"晶格压缩驱动的电子定位和Ir-O耦合协同实现超低过电位锂- co2电池","authors":"Jiyuan Xiao,&nbsp;Limin Liu,&nbsp;Shuyang Ren,&nbsp;Menghang Sun,&nbsp;Bo Wen,&nbsp;Song Xue,&nbsp;Shuai Yang,&nbsp;Xiaofeng Liu,&nbsp;Ning Zhao,&nbsp;Xiaofei Hu,&nbsp;Prof. Shujiang Ding,&nbsp;Prof. Guorui Yang","doi":"10.1002/anie.202506635","DOIUrl":null,"url":null,"abstract":"<p>Developing efficient cathode catalysts plays a crucial role in improving the CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) and CO<sub>2</sub> evolution reaction (CO<sub>2</sub>ER) kinetics in Li–CO<sub>2</sub> batteries. However, the chemical stability of the wide-bandgap insulator Li<sub>2</sub>CO<sub>3</sub> severely hinders the CO<sub>2</sub>ER. To address this challenge, this study proposes a lattice compression strategy in which electronic localization accelerates the CO<sub>2</sub>RR, thereby enhancing Ir–O coupling and inducing the formation of low-crystallinity Li<sub>2</sub>CO<sub>3</sub>, ultimately optimizing the CO<sub>2</sub>ER process. This approach enables the Li–CO<sub>2</sub> battery to achieve an ultralow overpotential of 0.33 V and an exceptionally high energy efficiency of ∼88.7%. Moreover, even after over 1100 h of operation, the battery maintains a stable charging potential of 3.3 V, representing the best performance reported to date. Through in situ and ex situ characterizations combined with theoretical calculations, we reveal that lattice compression leads to changes in the coordination environment, thereby enhancing electronic localization effects. This accelerates Li<sup>+</sup> migration near the catalyst surface, facilitating its rapid participation in CO<sub>2</sub>RR. Subsequently, the strengthened Ir–O coupling modulates the symmetry of Li<sub>2</sub>CO<sub>3</sub> molecules, reduces their crystallinity, and ultimately promotes their efficient decomposition. This study provides new insights into the design of high-performance bidirectional cathode catalysts through crystal facet engineering.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 31","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattice Compression-Driven Electron Localization and Ir-O Coupling Synergistically Enable Ultralow Overpotential Li-CO2 Batteries\",\"authors\":\"Jiyuan Xiao,&nbsp;Limin Liu,&nbsp;Shuyang Ren,&nbsp;Menghang Sun,&nbsp;Bo Wen,&nbsp;Song Xue,&nbsp;Shuai Yang,&nbsp;Xiaofeng Liu,&nbsp;Ning Zhao,&nbsp;Xiaofei Hu,&nbsp;Prof. Shujiang Ding,&nbsp;Prof. Guorui Yang\",\"doi\":\"10.1002/anie.202506635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing efficient cathode catalysts plays a crucial role in improving the CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) and CO<sub>2</sub> evolution reaction (CO<sub>2</sub>ER) kinetics in Li–CO<sub>2</sub> batteries. However, the chemical stability of the wide-bandgap insulator Li<sub>2</sub>CO<sub>3</sub> severely hinders the CO<sub>2</sub>ER. To address this challenge, this study proposes a lattice compression strategy in which electronic localization accelerates the CO<sub>2</sub>RR, thereby enhancing Ir–O coupling and inducing the formation of low-crystallinity Li<sub>2</sub>CO<sub>3</sub>, ultimately optimizing the CO<sub>2</sub>ER process. This approach enables the Li–CO<sub>2</sub> battery to achieve an ultralow overpotential of 0.33 V and an exceptionally high energy efficiency of ∼88.7%. Moreover, even after over 1100 h of operation, the battery maintains a stable charging potential of 3.3 V, representing the best performance reported to date. Through in situ and ex situ characterizations combined with theoretical calculations, we reveal that lattice compression leads to changes in the coordination environment, thereby enhancing electronic localization effects. This accelerates Li<sup>+</sup> migration near the catalyst surface, facilitating its rapid participation in CO<sub>2</sub>RR. Subsequently, the strengthened Ir–O coupling modulates the symmetry of Li<sub>2</sub>CO<sub>3</sub> molecules, reduces their crystallinity, and ultimately promotes their efficient decomposition. This study provides new insights into the design of high-performance bidirectional cathode catalysts through crystal facet engineering.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 31\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202506635\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202506635","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高效的阴极催化剂对提高锂-二氧化碳电池中CO2还原反应(CO2RR)和CO2析出反应(CO2ER)动力学具有重要意义。然而,宽禁带绝缘子Li2CO3的化学稳定性严重阻碍了CO2ER。为了解决这一挑战,本研究提出了一种晶格压缩策略,其中电子定位加速CO2RR,从而增强Ir-O耦合并诱导低结晶度Li2CO3的形成,最终优化CO2ER过程。这种方法使锂-二氧化碳电池能够实现0.33 V的超低过电位和高达~88.7%的超高能效。此外,即使在超过1100小时的工作后,电池仍保持3.3 V的稳定充电电位,这是迄今为止报道的最佳性能。通过原位和非原位表征结合理论计算,揭示了晶格压缩导致配位环境的变化,从而增强了电子局域化效应。这加速了Li+在催化剂表面附近的迁移,促进了其快速参与CO2RR。随后,增强的Ir-O偶联调节Li2CO3分子的对称性,降低其结晶度,最终促进其高效分解。本研究通过晶面工程为高性能双向阴极催化剂的设计提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Lattice Compression-Driven Electron Localization and Ir-O Coupling Synergistically Enable Ultralow Overpotential Li-CO2 Batteries

Lattice Compression-Driven Electron Localization and Ir-O Coupling Synergistically Enable Ultralow Overpotential Li-CO2 Batteries

Developing efficient cathode catalysts plays a crucial role in improving the CO2 reduction reaction (CO2RR) and CO2 evolution reaction (CO2ER) kinetics in Li–CO2 batteries. However, the chemical stability of the wide-bandgap insulator Li2CO3 severely hinders the CO2ER. To address this challenge, this study proposes a lattice compression strategy in which electronic localization accelerates the CO2RR, thereby enhancing Ir–O coupling and inducing the formation of low-crystallinity Li2CO3, ultimately optimizing the CO2ER process. This approach enables the Li–CO2 battery to achieve an ultralow overpotential of 0.33 V and an exceptionally high energy efficiency of ∼88.7%. Moreover, even after over 1100 h of operation, the battery maintains a stable charging potential of 3.3 V, representing the best performance reported to date. Through in situ and ex situ characterizations combined with theoretical calculations, we reveal that lattice compression leads to changes in the coordination environment, thereby enhancing electronic localization effects. This accelerates Li+ migration near the catalyst surface, facilitating its rapid participation in CO2RR. Subsequently, the strengthened Ir–O coupling modulates the symmetry of Li2CO3 molecules, reduces their crystallinity, and ultimately promotes their efficient decomposition. This study provides new insights into the design of high-performance bidirectional cathode catalysts through crystal facet engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信